Skip to main content

Oral Controlled Release Systems: Current Strategies and Challenges

  • Chapter
Novel Drug Delivery Technologies

Abstract

Oral drug delivery route is the widely favored and adaptable for all as it is endowed with a maximum surface area when compared to the other routes of drug administration. The conventional dosage form leads to a wide range of fluctuations in plasma drug concentration with subsequent unwanted toxicity and poor efficiency. Maintaining a steady concentration of the drug in the plasma within the therapeutic index is critical for efficient treatment. By optimizing the biopharmaceutic, pharmacokinetic, and pharmacodynamic properties of drugs, improvement in conventional formulation can be achieved. The reduction of dosing frequency is an extent that single daily dose is enough for the management of uniform plasma concentration to achieve the maximum utility of a drug. Controlled release formulation acts on several mechanisms such as osmotic pressure, matrix system, reservoir system, and altered density system to control the drug release rate. This chapter summarizes the formulation designing approaches, release kinetics, strategies, technologies, recent advancements, and challenges in the development of oral controlled drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brahmankar DM, Jaiswal SB (1995) Biopharmaceutics and pharmacokinetics. Vallabh prakashan 338–341, 44–57

    Google Scholar 

  2. Bhowmik D, Gopinath H, Kumar Pragati B, Duraivel S, Kumar Sampth KP (2012) Controlled drug delivery systems. Pharm Innov 1:24–32

    CAS  Google Scholar 

  3. Kumar MR, Ramana V, Sandeep G, Lingam M, Ramesh G, Yamsani MR (2009) Factors influencing the design and performance of oral sustain or controlled release dosage forms. Int J Pharm Sci Nanotechnol 2(3)

    Google Scholar 

  4. Rajesh T (2016) Controlled release drug formulation in pharmaceuticals: a study on theor application and properties. Research Gate

    Google Scholar 

  5. Robinson Joseph RLVHL (1987) Fundamentals and applications of controlled drug delivery. Marcel Dekkaer 7:17,24–17,25

    Google Scholar 

  6. Vyas SP, Khar R (2010). Controlled drug delivery: concepts and advance. Vallabh prakashan:23–5158, 61–64

    Google Scholar 

  7. Shaikh HK, Kshirsagar R, Patil S (2015) Mathematical models for drug release characterization: a review. World J Pharm Pharm Sci 4(4):324–338

    CAS  Google Scholar 

  8. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  9. Rhodes C, Porter S (1998) Coatings for controlled-release drug delivery systems. Drug Dev Ind Pharm 24(12):1139–1154

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Huo M, Chaudhuri AS, Yang C, Cao D, Wu Z et al (2017) Self-assembled polyelectrolyte complexes films as efficient compression coating layers for controlled-releasing tablets. J Mater Sci 28(5):67

    Google Scholar 

  11. Hu L, Sun H, Zhao Q, Han N, Bai L, Wang Y et al (2015) Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mater Sci Eng C 47:313–324

    Article  CAS  Google Scholar 

  12. Patrick SL, Wong SKG, Stewart BE (2003) Modified release drug delivery technology: osmotically controlled tablets. Marcel Dekker, p 101

    Google Scholar 

  13. Sowjanya M, Rao CVP, Srinivasa Babu P, Pallavi K (2017) Osmotic drug delivery systems: a review. Research Gate

    Google Scholar 

  14. Mathur M, Mishra R (2016) A review on osmotic pump drug delivery system. Int J Pharm Sci Res 7(2):453–471

    CAS  Google Scholar 

  15. Yang C, Ji X, Pan W, Liu Y, Zhou L, Chen Q et al (2018) Paliperidone ascending controlled-release pellets with osmotic core and driven by delayed osmotic pressure. J Drug Deliv Sci Technol 48:193–199

    Article  CAS  Google Scholar 

  16. Qin C, He W, Zhu C, Wu M, Jin Z, Zhang Q et al (2014) Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet. Int J Pharm 466(1–2):276–285

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Wang J, Zhu S (2007) Delivery of prazosin hydrochloride from osmotic pump system prepared by coating the core tablet with an indentation. Drug Deliv 14(4):219–224

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Wang X (2008) Solubility-modulated monolithic osmotic pump tablet for atenolol delivery. Eur J Pharm Biopharm 68(2):298–302

    Article  CAS  PubMed  Google Scholar 

  19. Nish S, Mathew G, Lincy J (2012) Matrix tablets: an effective way for oral controlled release drug delivery. Iranian J Pharm Sci 8(3):165–170

    Google Scholar 

  20. Zalte H, Saudagar R (2013) Review on sustained release matrix tablet. Int J Pharm Biol Sci 3(4):17–29

    CAS  Google Scholar 

  21. Dey S, Dutta S, Mazumder B (2012) Formulation and evaluation of floating matrix tablet of atenolol for gastro-retentive drug delivery. Int J Pharm Pharm Sci 4:433–437

    CAS  Google Scholar 

  22. Varshosaz J, Tavakoli N, Kheirolahi F (2006) Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech 7(1):E168–EE74

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abdel-Rahman SI, Mahrous GM, El-Badry M (2009) Preparation and comparative evaluation of sustained release metoclopramide hydrochloride matrix tablets. Saudi Pharm J 17(4):283–288

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tarun G, Murthy R (2011) Patented microencapsulation techniques and its application. J Pharm Res 4(7):2097–2102

    Google Scholar 

  25. Singh M, Hemant K, Ram M, Shivakumar H (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5(2):65

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu T-L, Sun W-g, Zhao W, Chen T (2011) Preparation of amifostine polylactide-co-glycolide microspheres and its irradiation protective to mouse through oral administration. Drug Dev Ind Pharm 37(12):1473–1480

    Article  CAS  PubMed  Google Scholar 

  27. Aydogan E, Comoglu T, Pehlivanoglu B, Dogan M, Comoglu S, Dogan A et al (2015) Process and formulation variables of pregabalin microspheres prepared by w/o/o double emulsion solvent diffusion method and their clinical application by animal modeling studies. Drug Dev Ind Pharm 41(8):1311–1320

    Article  CAS  PubMed  Google Scholar 

  28. More S, Ghodekar S, Rane B, Bavaskar K, Patil M, Jain A (2018) Multilayered tablet: a novel approach for oral drug delivery. Int J Pharm Sci Res 9(3):872–882

    CAS  Google Scholar 

  29. Chowdary YA, Raparla R, Madhuri M (2014) Formulation and evaluation of multilayered tablets of pioglitazone hydrochloride and metformin hydrochloride. J Pharm 2014:1–14

    Google Scholar 

  30. Ryakala H, Dineshmohan S, Ramesh A, Gupta V (2015) Formulation and in vitro evaluation of bilayer tablets of nebivolol hydrochloride and nateglinide for the treatment of diabetes and hypertension. J Drug Deliv 2015:1–14

    Article  CAS  Google Scholar 

  31. Elzayat EM, Abdel-Rahman AA, Ahmed SM, Alanazi FK, Habib WA, Abou-Auda HS et al (2017) Formulation and pharmacokinetics of multi-layered matrix tablets: biphasic delivery of diclofenac. Saudi Pharm J 25(5):688–695

    Article  PubMed  Google Scholar 

  32. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P (2016) Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm 510(1):144–158

    Article  CAS  PubMed  Google Scholar 

  33. Mandal UK, Chatterjee B, Senjoti FG (2016) Gastro-retentive drug delivery systems and their in vivo success: a recent update. Asian J Pharm Sci 11(5):575–584

    Article  Google Scholar 

  34. Gaur PK, Mishra S, Kumar A, Panda BP (2014) Development and optimization of gastroretentive mucoadhesive microspheres of gabapentin by Box–Behnken design. Artif Cells Nanomed Biotechnol 42(3):167–177

    Article  CAS  PubMed  Google Scholar 

  35. Bansal S, Beg S, Asthana A, Garg B, Asthana GS, Kapil R et al (2016) QbD-enabled systematic development of gastroretentive multiple-unit microballoons of itopride hydrochloride. Drug Deliv 23(2):437–451

    Article  CAS  PubMed  Google Scholar 

  36. Malode VN, Paradkar A, Devarajan PV (2015) Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion. Int J Pharm 491(1–2):345–351

    Article  CAS  PubMed  Google Scholar 

  37. Murphy CS, Pillay V, Choonara YE, du Toit LC (2009) Gastroretentive drug delivery systems: current developments in novel system design and evaluation. Curr Drug Deliv 6(5):451–460

    Article  CAS  PubMed  Google Scholar 

  38. Garg R, Gupta G (2008) Progress in controlled gastroretentive delivery systems. Trop J Pharm Res 7(3):1055–1066

    Article  Google Scholar 

  39. Dave BS, Amin AF, Patel MM (2004) Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation. AAPS PharmSciTech 5(2):77–82

    Article  PubMed Central  Google Scholar 

  40. Chen Y-C, Ho H-O, Liu D-Z, Siow W-S, Sheu M-T (2015) Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PloS one 10(1):e0116914

    Article  PubMed  PubMed Central  Google Scholar 

  41. Acharya S, Patra S, Pani NR (2014) Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr Polym 102:360–368

    Article  CAS  PubMed  Google Scholar 

  42. Huanbutta K, Nernplod T, Akkaramongkolporn P, Sriamornsak P (2017) Design of porous Eudragit® L beads for floating drug delivery by wax removal technique. Asian J Pharm Sci 12(3):227–234

    Article  PubMed  Google Scholar 

  43. Patel AU, Caudhari DV, Shah PJ, Shah SA (2018) Hot melt granulation method for the preparation of floating matrix tablets of Tolperison Hydrochloride. Future J Pharm Sci

    Google Scholar 

  44. Sethi S, Mangla B, Kamboj S, Rana V (2018) A QbD approach for the fabrication of immediate and prolong buoyant cinnarizine tablet using polyacrylamide-g-corn fibre gum. Int J Biol Macromol 117:350–361

    Article  CAS  PubMed  Google Scholar 

  45. Hwang K-M, Cho C-H, Tung N-T, Kim J-Y, Rhee Y-S, Park E-S (2017) Release kinetics of highly porous floating tablets containing cilostazol. Eur J Pharm Biopharm 115:39–51

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Tang J, Liu D, Li X, Cheng L, Tang X (2016) Design and evaluation of an innovative floating and bioadhesive multiparticulate drug delivery system based on hollow structure. Int J Pharm 503(1–2):41–55

    Article  CAS  PubMed  Google Scholar 

  47. Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V (2017) Ofloxacin loaded gellan/PVA nanofibers-Synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater Sci Eng C 71:611–619

    Article  CAS  Google Scholar 

  48. Klausner EA, Lavy E, Friedman M, Hoffman A (2003) Expandable gastroretentive dosage forms. J Control Release 90(2):143–162

    Article  CAS  PubMed  Google Scholar 

  49. Mamajek RC, Moyer ES (1980). Drug-dispensing device and method. Google Patents

    Google Scholar 

  50. Krumme M (2004) Expandable gastroretentive therapeutical system with prolonged stomach retention time. Google Patents

    Google Scholar 

  51. Omidian H, Park K (2011) Superporous hydrogels for drug delivery systems

    Chapter  Google Scholar 

  52. El-said IA, Aboelwafa AA, Khalil RM, ElGazayerly ON (2016) Baclofen novel gastroretentive extended release gellan gum superporous hydrogel hybrid system: in vitro and in vivo evaluation. Drug Deliv 23(1):101–112

    Article  CAS  PubMed  Google Scholar 

  53. Jain D, Raturi R, Jain V, Bansal P, Singh R (2011) Recent technologies in pulsatile drug delivery systems. Biomatter 1(1):57–65

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maroni A, Zema L, Loreti G, Palugan L, Gazzaniga A (2013) Film coatings for oral pulsatile release. Int J Pharm 457(2):362–371

    Article  CAS  PubMed  Google Scholar 

  55. Maroni A, Zema L, Del Curto MD, Loreti G, Gazzaniga A (2010) Oral pulsatile delivery: rationale and chronopharmaceutical formulations. Int J Pharm 398:1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  56. Gazzaniga A, Palugan L, Foppoli A, Sangalli ME (2008) Oral pulsatile delivery systems based on swellable hydrophilic polymers. Eur J Pharm Biopharm 68(1):11–18

    Article  CAS  PubMed  Google Scholar 

  57. Gazzaniga A, Maroni A, Sangalli ME, Zema L (2006) Time-controlled oral delivery systems for colon targeting. Expert Opin Drug Deliv 3(5):583–597

    Article  CAS  PubMed  Google Scholar 

  58. Krögel I, Bodmeier R (1999) Floating or pulsatile drug delivery systems based on coated effervescent cores. Int J Pharm 187(2):175–184

    Article  PubMed  Google Scholar 

  59. Keraliya RA, Patel C, Patel P, Keraliya V, Soni TG, Patel RC et al (2012) Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm 2012:1–9

    Google Scholar 

  60. Maroni A, Zema L, Cerea M, Sangalli ME (2005) Oral pulsatile drug delivery systems. Expert Opin Drug Deliv 2(5):855–871

    Article  CAS  PubMed  Google Scholar 

  61. Prisant L (2001) Verapamil revisited: a transition in novel drug delivery systems and outcomes. Heart Dis (Hagerstown, Md) 3(1):55–62

    Article  CAS  Google Scholar 

  62. Battu S, Yalavarthi PR, Reddy GS, Rao VUM, Devi KJ, Vadlamudi HC (2018) Design and assessment of pulsatile technology based chronomodulated delivery systems of nifedipine. Beni-Suef Univ J Basic Appl Sci

    Google Scholar 

  63. Charoenthai N, Wickramanayaka A, Sungthongjeen S, Puttipipatkhachorn S (2018) Use of cassava starch nanocrystals to make a robust rupturable pulsatile release pellet. J Drug Deliv Sci Technol 47:283–290

    Article  CAS  Google Scholar 

  64. Beugeling M, Grasmeijer N, Born PA, van der Meulen M, van der Kooij RS, Schwengle K et al (2018) The mechanism behind the biphasic pulsatile drug release from physically mixed poly (dl-lactic (-co-glycolic) acid)-based compacts. Int J Pharm 551(1–2):195–202

    Article  CAS  PubMed  Google Scholar 

  65. Lee SH, Kim BH, Park CG, Lee C, Lim BY, Choy YB (2018) Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery. J Control Release 286:224–230

    Article  CAS  PubMed  Google Scholar 

  66. Penhasi A, Gomberg M (2018) Design and development of an innovative water insoluble film-coating combination for oral pulsatile drug delivery. J Drug Deliv Sci Technol 43:274–282

    Article  CAS  Google Scholar 

  67. Wang H, Cheng L, Wen H, Li C, Li Y, Zhang X et al (2017) A time-adjustable pulsatile release system for ketoprofen: in vitro and in vivo investigation in a pharmacokinetic study and an IVIVC evaluation. Eur J Pharm Biopharm 119:192–200

    Article  CAS  PubMed  Google Scholar 

  68. Perez-Martinez C, Chávez SDM, del Castillo-Castro T, Ceniceros TEL, Castillo-Ortega M, Rodriguez-Felix D et al (2016) Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:12–17

    Article  CAS  Google Scholar 

  69. Vemula SK, Katkum R (2015) Colon-specific double-compression coated pulsatile tablets of ketorolac tromethamine: formulation development and pharmacokinetics. J Drug Deliv Sci Technol 29:78–83

    Article  CAS  Google Scholar 

  70. Patadia R, Vora C, Mittal K, Mashru R (2016) Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets. Pharm Dev Technol 21(7):794–802

    CAS  PubMed  Google Scholar 

  71. Wilson CG, Crowley PJ (2011) Controlled release in oral drug delivery. Springer, New York

    Book  Google Scholar 

  72. Wang J, Li H, Shuang C, Li A, Wang C, Huang Y (2015) Effect of pore structure on adsorption behavior of ibuprofen by magnetic anion exchange resins. Microporous Mesoporous Mater 210:94–100

    Article  CAS  Google Scholar 

  73. Jeong SH, Park K (2008) Drug loading and release properties of ion-exchange resin complexes as a drug delivery matrix. Int J Pharm 361(1–2):26–32

    Article  CAS  PubMed  Google Scholar 

  74. Shang R, Liu C, Quan P, Zhao H, Fang L (2018) Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int J Pharm 545(1–2):163–169

    Article  CAS  PubMed  Google Scholar 

  75. Vasiliu S, Bunia I, Racovita S, Neagu V (2011) Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: kinetics, equilibrium and thermodynamic studies. Carbohydr Polym 85(2):376–387

    Article  CAS  Google Scholar 

  76. Racovita S, Lungan M, Bunia I, Popa M, Vasiliu S (2016) Adsorption and release studies of cefuroxime sodium from acrylic ion exchange resin microparticles coated with gellan. React Funct Polym 105:103–113

    Article  CAS  Google Scholar 

  77. Shen S-C, Dong Y-C, Letchmanan K, Ng WK (2017) Mesoporous materials and technologies for development of oral medicine. In: Nanostructures for oral medicine. Elsevier, Amsterdam, pp 699–749

    Chapter  Google Scholar 

  78. Mitran R-A, Deaconu M, Matei C, Berger D (2019) Mesoporous silica as carrier for drug-delivery systems. In: Nanocarriers for drug delivery. Elsevier, Amsterdam, pp 351–374

    Chapter  Google Scholar 

  79. Li J, Xu L, Yang B, Bao Z, Pan W, Li S (2015) Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier. Mater Sci Eng C 55:367–372

    Article  CAS  Google Scholar 

  80. Soto RJ, Yang L, Schoenfisch MH (2016) Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release. ACS Appl Mater Interf 8(3):2220–2231

    Article  CAS  Google Scholar 

  81. Zhao Z, Gao Y, Wu C, Hao Y, Zhao Y, Xu J (2016) Development of novel core-shell dual-mesoporous silica nanoparticles for the production of high bioavailable controlled-release fenofibrate tablets. Drug Dev Ind Pharm 42(2):199–208

    Article  CAS  PubMed  Google Scholar 

  82. Shariatinia Z, Zahraee Z (2017) Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J Colloid Interf Sci 501:60–76

    Article  CAS  Google Scholar 

  83. Popova M, Trendafilova I, Zgureva D, Kalvachev Y, Boycheva S, Tušar NN et al (2018) Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine. J Drug Deliv Sci Technol 44:415–420

    Article  CAS  Google Scholar 

  84. Bhatt P, Khatri N, Kumar M, Baradia D, Misra A (2015) Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Deliv 22(6):849–861. PubMed PMID: 24725027. Epub 2014/04/15. eng.

    Article  CAS  PubMed  Google Scholar 

  85. Tian B, Liu S, Wu S, Lu W, Wang D, Jin L et al (2017) pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf B Biointerf 154:287–296

    Article  CAS  Google Scholar 

  86. Anirudhan TS, Vasantha CS, Sasidharan AV (2017) Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil. Eur Polym J 93:572–589

    Article  CAS  Google Scholar 

  87. Ghebre-Selassie I, Martin CE, Zhang F, DiNunzio J (2018) Pharmaceutical extrusion technology. CRC Press, Boca Raton

    Google Scholar 

  88. Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A (2018) Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 35(2):204–217. PubMed PMID: 29542378. Epub 2018/03/16. eng.

    Article  CAS  PubMed  Google Scholar 

  89. Douroumis D (2012) Hot-melt extrusion: pharmaceutical applications. Wiley, New York

    Book  Google Scholar 

  90. Hu X-Y, Lou H, Hageman MJ (2018) Preparation of lapatinib ditosylate solid dispersions using solvent rotary evaporation and hot melt extrusion for solubility and dissolution enhancement. Int J Pharm 552(1–2):154–163

    Article  CAS  PubMed  Google Scholar 

  91. McFall H, Sarabu S, Shankar V, Bandari S, Murthy SN, Kolter K et al Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: In vitro and In vivo studies. Int J Pharm 2018

    Google Scholar 

  92. Zhang S, Meng X, Wang Z, Fan A, Wang G, Zhao Y et al (2017) Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs. Eur J Pharm Sci 100:109–115

    Article  CAS  PubMed  Google Scholar 

  93. Silva LAD, Almeida SL, Alonso EC, Rocha PB, Martins FT, Freitas LA et al (2018) Preparation of a solid self-microemulsifying drug delivery system by hot-melt extrusion. Int J Pharm 541(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  94. Vo AQ, Feng X, Pimparade M, Ye X, Kim DW, Martin ST et al (2017) Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion. Eur J Pharm Sci 102:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Claeys B, Vervaeck A, Hillewaere XK, Possemiers S, Hansen L, De Beer T et al (2015) Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm 90:44–52

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197

    Article  CAS  PubMed  Google Scholar 

  97. Zhang J, Yang W, Vo AQ, Feng X, Ye X, Kim DW et al (2017) Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation. Carbohydrate polym 177:49–57

    Article  CAS  Google Scholar 

  98. Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A (2018) Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech:1–22

    Google Scholar 

  99. Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B 3(6):361–372

    Article  Google Scholar 

  100. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A et al (2018) Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm 536(1):95–107

    Article  CAS  PubMed  Google Scholar 

  101. Du Y, Ling L, Ismail M, He W, Xia Q, Zhou W et al (2018) Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int J Pharm 549(1–2):352–362

    Article  CAS  PubMed  Google Scholar 

  102. Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613

    Article  CAS  PubMed  Google Scholar 

  103. Li H, Chen M, Su Z, Sun M, Ping Q (2016) Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Int J Pharm 511(1):524–537

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, Yang T, Wei S, Zhou C, Lan Y, Cao A et al (2018) Mucus adhesion-and penetration-enhanced liposomes for paclitaxel oral delivery. Int J Pharm 537(1–2):245–256

    Article  CAS  PubMed  Google Scholar 

  105. Alayoubi A, Aqueel MS, Cruz CN, Ashraf M, Zidan AS (2018) Application of in vitro lipolysis for the development of oral self-emulsified delivery system of Nimodipine. Int J Pharm

    Google Scholar 

  106. Sun F, Ye C, Thanki K, Leng D, van Hasselt PM, Hennink WE et al (2018) Mixed micellar system stabilized with saponins for oral delivery of vitamin K. Colloids Surf B Biointerf 170:521–528

    Article  CAS  Google Scholar 

  107. Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res 35(9):176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ (2000) Oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):1–9. PubMed PMID: 10708873. Epub 2000/03/10. eng

    Article  CAS  PubMed  Google Scholar 

  109. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ (2000) Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):11–17. PubMed PMID: 10708874. Epub 2000/03/10. eng

    Article  CAS  PubMed  Google Scholar 

  110. Santini JT Jr, Cima MJ, Langer R (1999) A controlled-release microchip. Nature. 397(6717):335–338. PubMed PMID: 9988626. Epub 1999/02/13. eng

    Article  CAS  PubMed  Google Scholar 

  111. Modified-release drug delivery technology. CRC Press, Boca Raton (2002)

    Google Scholar 

  112. Khaled SA, Burley JC, Alexander MR, Roberts CJ (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461(1):105–111

    Article  CAS  PubMed  Google Scholar 

  113. Wang CC, Tejwani Motwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL et al (2006) Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Indust Pharm 32(3):367–376. PubMed PMID: 16556541. Epub 2006/03/25. eng

    Article  CAS  Google Scholar 

  114. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H (2007) Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci 96(9):2446–2456. PubMed PMID: 17497729. Epub 2007/05/15. eng

    Article  CAS  PubMed  Google Scholar 

  115. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW (2015) 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 89:157–162. PubMed PMID: 25497178. Epub 2014/12/17. eng

    Article  CAS  PubMed  Google Scholar 

  116. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494(2):643–650. PubMed PMID: 26235921. Epub 2015/08/04. eng

    Article  CAS  PubMed  Google Scholar 

  117. Buanz AB, Saunders MH, Basit AW, Gaisford S (2011) Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res 28(10):2386–2392. PubMed PMID: 21544688. Epub 2011/05/06. eng

    Article  CAS  PubMed  Google Scholar 

  118. Rattanakit P, Moulton SE, Santiago KS, Liawruangrath S, Wallace GG (2012) Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms. Int J Pharm 422(1–2):254–263. PubMed PMID: 22101281. Epub 2011/11/22. eng.

    Article  CAS  PubMed  Google Scholar 

  119. Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I et al (2017) 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 261:207–215

    Article  CAS  PubMed  Google Scholar 

  120. Yu DG, Zhu LM, Branford-White CJ, Yang XL (2008) Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci 97(9):3666–3690. PubMed PMID: 18257041. Epub 2008/02/08. eng.

    Article  CAS  PubMed  Google Scholar 

  121. Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H et al (2012) Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci 47(3):615–623

    Article  CAS  PubMed  Google Scholar 

  122. Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG (2017) 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol 40:164–171

    Article  CAS  Google Scholar 

  123. Zhiqing Hu JZ, Pengchong X, Yang F, Dürig T, Repka M (2018). T1230-11-085 – Development of controlled release oral dosages by density gradient modification using 3D printing technologies. AAPS anuual meeting 2018; Washington DC, USA

    Google Scholar 

  124. Tandel H, Bhatt P, Jain K, Shahiwala A, Misra A (2018) In-vitro and in-vivo tools in emerging drug delivery scenario: challenges and updates, pp 19–42

    Google Scholar 

  125. Varshosaz J, Tavakoli N, Roozbahani F (2006) Formulation and in vitro characterization of ciprofloxacin floating and bioadhesive extended-release tablets. Drug Deliv 13(4):277–285. PubMed PMID: 16766469. Epub 2006/06/13. eng.

    Article  CAS  PubMed  Google Scholar 

  126. Fotaki N (2011) Flow-through cell apparatus (USP apparatus 4): operation and features. Dissolution Technol 18(4)

    Article  Google Scholar 

  127. Ghayas S, Sheraz M, Anjum DF, Tasawer Baig M (2013) Factors influencing the dissolution testing of drugs

    Google Scholar 

  128. Shah AC. Handbook of dissolution testing. In: Hanson WA. Pharmaceutical Technology Book Division, 320N. A St., P.O. Box 50, Springfield, OR 97477. 1982. 163pp. 13×22cm. Price $26.50. 1983;72(5):581–582

    Google Scholar 

  129. Rathbone J, Butler J (2011). In vitro testing of controlled release dosage forms during development and manufacture, pp 91–108

    Chapter  Google Scholar 

  130. Csermely P, Korcsmaros T, Kiss HJ, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharm Ther 138(3):333–408. PubMed PMID: 23384594. Pubmed Central PMCID: PMC3647006. Epub 2013/02/07. eng

    Article  CAS  Google Scholar 

  131. FDA. The Drug Development Process 2018. Available from: https://www.fda.gov/forpatients/approvals/drugs/

  132. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharm 162(6):1239–1249. PubMed PMID: 21091654. Pubmed Central PMCID: PMC3058157. Epub 2010/11/26. eng.

    Article  CAS  Google Scholar 

  133. Thompson TN (2000) Early ADME in support of drug discovery: the role of metabolic stability studies. Curr Drug Metab 1(3):215–241. PubMed PMID: 11465046. Epub 2001/07/24. eng.

    Article  CAS  PubMed  Google Scholar 

  134. Grassi M (2007) Understanding drug release and absorption mechanisms. CRC Press, Boca Raton

    Google Scholar 

  135. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V et al Can animal models of disease reliably inform human studies? PLoS Med 2010, 7(3):e1000245. PubMed PMID: 20361020. Pubmed Central PMCID: PMC2846855. Epub 2010/04/03. eng

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tang C, Prueksaritanont T (2010) Use of in vivo animal models to assess pharmacokinetic drug-drug interactions. Pharm Res 27(9):1772–1787. PubMed PMID: 20428930. Epub 2010/04/30. eng

    Article  CAS  PubMed  Google Scholar 

  137. Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metab Dispos 23(10):1008–1021. PubMed PMID: 8654187. Epub 1995/10/01. eng.

    CAS  PubMed  Google Scholar 

  138. Prescott LF (1974) Gastric emptying and drug absorption. Br J Clin Pharm 1(3):189–190. PubMed PMID: 22454945

    Article  CAS  Google Scholar 

  139. Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380. PubMed PMID: 8527686. Epub 1995/07/01. eng

    Article  CAS  PubMed  Google Scholar 

  140. Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B 2(6):549–561

    Article  Google Scholar 

  141. Guengerich FP (1997) Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chemico-Biol Interact 106(3):161–182. PubMed PMID: 9413544. Epub 1997/12/31. eng.

    Article  CAS  Google Scholar 

  142. Iwasaki K, Uno Y (2009) Cynomolgus monkey CYPs: a comparison with human CYPs. Xenobiotica 39(8):578–581. PubMed PMID: 19622000. Epub 2009/07/23. eng.

    Article  CAS  PubMed  Google Scholar 

  143. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med 354(23):2473–2483

    Article  CAS  PubMed  Google Scholar 

  144. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharm 165(5):1260–1287. PubMed PMID: 22013971. Pubmed Central PMCID: PMC3372714. Epub 2011/10/22.eng

    Article  CAS  Google Scholar 

  145. Kumar KS, Bhowmik D, Dutta A, Paswan S, Deb L (2013) Recent trends in scope and opportunities of control release oral drug delivery system

    Google Scholar 

  146. Khan GM (2001) Controlled release oral dosage forms: some recent advances in matrix type drug delivery systems. J Med Sci 1:350–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyanka Bhatt or Deepa Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bhatt, P., Patel, D., Patel, A., Patel, A., Nagarsheth, A. (2019). Oral Controlled Release Systems: Current Strategies and Challenges. In: Misra, A., Shahiwala, A. (eds) Novel Drug Delivery Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-3642-3_4

Download citation

Publish with us

Policies and ethics