Skip to main content

Panspermia Hypothesis: History of a Hypothesis and a Review of the Past, Present, and Future Planned Missions to Test This Hypothesis

  • Chapter
  • First Online:
Astrobiology

Abstract

Speculations about the origins of life on Earth have existed since the dawn of civilization. The Greek philosopher Anaxagoras (500–428 BCE) asserted that the seeds of life are present everywhere in the universe (Nicholson, Trends Microbiol 17:243−250, 2009). He coined the term panspermia to describe the concept as life traveling between planets as seed. The other Greek philosophers, Anaximander (588–524 BCE) and Thales (624–548 BCE), mentioned philosophical point of panspermia theory. Many famous nineteenth-century scientists also wrote about this theory. Among others, Svante Arrhenius posited that microscopic spores are transferred through interplanetary space by means of radiation pressure from the sun, in 1903. In the modern formulation, there are three stages envisioned in this hypothesis: escape (from a planet), transit (through interplanetary space), and landing (on a recipient planet). Each stage has since been investigated, lending some credence to the hypothesis. For example, the possibility of microbial spores escaping a planet has been supported by the capture of radioresistant microbes from high altitudes on Earth. From the space experiments conducted in Earth orbiters and on the International Space Station (ISS), microbes have been found to survive at low Earth orbits (LEO) under some protection from intense solar UV radiation, which could well be available for spores embedded within meteorites. Heating up in the atmosphere due to friction is the main problem during reentry to the planet with atmosphere. However, because the time spent under intense friction is generally in the order of only a few tens of seconds, the amount of heat generated may not be sufficient to kill all the spores, especially if hitching a ride within meteorites. The panspermia hypothesis has been modified and revived since its original proposal and has given a new perspective to the explorations on Mars or the icy moons of Jupiter and Saturn. The hypothesis, its modifications, and past and ongoing research are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arrhenius S (1903) Die Verbreitung des Lebens im Welten- raum. Unschau 7:481–485

    Google Scholar 

  • Baque´ M, Scalzi G, Rabbow E, Rettberg P, Billi D (2013) Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and martian simulations. Orig Life Evol Biosph 43:377–389

    Article  Google Scholar 

  • Baquéq M, Scalzi G, Rabbow E et al (2013) Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Orig Life Evol Biosph 43:377–389

    Article  Google Scholar 

  • Bill D, Verseux C, Rabbow E et al (2017) Endurance of desert-cyanobacteria biofilms to space and simulated Mars conditions during the EXPOSE-R2 space mission. In: Abstracts of European Astrobiology Network Association 2017, Aarhus University, Denmark, 14–18 August 2017

    Google Scholar 

  • Bucker H, Horneck G (1968) Discussion of a possible contamination of space with terrestrial life. Life Sci Space Res 7:21–27

    Google Scholar 

  • Cottin H, Kotler JM, Billi D et al (2017) Space as a tool for astrobiology: review and recommendations for experimentations in Earth orbit and beyond. Space Sci Rev 209(1–4):83–181

    Article  Google Scholar 

  • Crick FHC, Orgel LE (1973) Directed panspermia. Icarus 19:341–346

    Article  Google Scholar 

  • Dehel T, Lorge F, Dickinson M (2008) Uplift of microorganisms by electric fields above thunderstorms. J Electrost 66:463–466

    Article  Google Scholar 

  • Elsaesser A, Quinn RC, Ehrenfreund P et al (2014) Organics Exposure in Orbit (OREOcube): a next-generation space exposure platform. Langmuir 30:13217–13227

    Article  CAS  Google Scholar 

  • Frösler J, Panitz C, Wingender J et al (2017) Survival of Deinococcus geothermalis in biofilms under desiccation and simulated space and Martian conditions. Astrobiology 17:431–447

    Article  Google Scholar 

  • Gladman B, Dones L, Levison HF et al (2005) Impact seeding and reseeding in the inner solar system. Astrobiology 5:483–496

    Article  Google Scholar 

  • Griffin DW (2004) Terrestrial microorganisms at an altitude of 20,000m in Earth’s atmosphere. Aerobiologia 20:135–140

    Article  Google Scholar 

  • Griffin DW (2008) Non-spore-forming eubacteria isolated at an altitude of 20,000m in Earth’s atmosphere: extended incubation periods needed for culture-based assays. Aerobiologia 24:19–25

    Article  Google Scholar 

  • Harris MJ, Wickramasinghe NC, Lloyd D et al (2002) The detection of living cells in stratospheric samples. Proc SPIE 4495:192–198

    Article  Google Scholar 

  • Horneck G, Bücker H, Dose K et al (1984) Microorganisms and biomolecules in space environment, experiment ES029 on Spacelab 1. Adv Space Res 4:19–27

    Article  CAS  Google Scholar 

  • Horneck G, Bucker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45

    Article  CAS  Google Scholar 

  • Horneck G, Rettberg P, Reitz G et al (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547

    Article  CAS  Google Scholar 

  • Horneck G, Mileikowsky C, Melosh HJ et al (2002) Viable transfer of microorganisms in the solar system and beyond. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 57–76

    Chapter  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  CAS  Google Scholar 

  • Hotchin J, Lorenz P, Hemenway C (1968) The survival of terrestrial microorganisms in space at orbital altitudes during Gemini satellite experiments. Life Sci Space Res 6:108–114

    CAS  PubMed  Google Scholar 

  • Hoyle F, Wickramasinghe NC (1979) Diseases from space. Dent, London

    Google Scholar 

  • Imshenetsky A, Lysenko S, Kazakov G (1978) Upper boundary of the biosphere. Appl Environ Microbiol 35:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Yang Y, Kawashiri N et al (2013) The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. Orig Life Evol Biosph 43:411–428

    Article  Google Scholar 

  • Kawaguchi Y, Sugino T, Tabata M et al (2014) Fluorescence imaging of microbe-containing particles shot from a two-stage light-gas gun into an aerogel. Orig Life Evol Biosph 44:43–60

    Article  CAS  Google Scholar 

  • Kawaguchi Y, Yokobori S, Hashimoto H, Yano H, Tabata M et al (2016) Investigation of the interplanetary transfer of microbes in the Tanpopo mission at the exposed facility of the international space station. Astrobiology 16:363–376

    Article  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  Google Scholar 

  • Kring DA (2000) Impact events and their effect on the origin, evolution, and distribution of life. GSA Today 10:1–7

    Google Scholar 

  • Lighthart B (1997) The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol Ecol 23:263–274

    Article  CAS  Google Scholar 

  • Mautner M, Matloff G (1979) Directed panspermia: a technical evaluation of seeding nearby solar systems. J Br Interplanet Soc 32:419–422

    Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–930

    Article  CAS  Google Scholar 

  • Melosh HJ (1988) The rocky road to panspermia. Nature 332:687–688

    Article  CAS  Google Scholar 

  • Mileikowsky C, Cucinotta FA, Wilson JW et al (2000) Natural transfer of viable microbes in space—1. From Mars to Earth and Earth to Mars. Icarus 145:391–427

    Article  CAS  Google Scholar 

  • Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250

    Article  CAS  Google Scholar 

  • Nicholson WL, Ricco AJ, Agasid E et al (2011) The O/OREOS Mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. Astrobiology 11:951–958

    Article  Google Scholar 

  • Onofri S, de la Torre R, de Vera J-P et al (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  Google Scholar 

  • Panitz C, Horneck G, Rabbow E et al (2015) The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. Int J Astrobiol 14:105–114

    Article  CAS  Google Scholar 

  • Panitz C, Frösler J, Walingender J et al (2017) The BOSS experiment of the EXPOSE-R2 mission: biofilms versus planktonic cells. In: Abstracts of European Astrobiology Network Association 2017, Aarhus University, Denmark, 14−18 August 2017

    Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von Heise-Rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386

    Article  Google Scholar 

  • Smith DJ (2013) Microbes in upper atmosphere and unique opportunity for astrobiology research. Astrobiology 13:981–990

    Article  Google Scholar 

  • Smith DJ, Griffin DW, Schuerger AC (2010) Stratospheric microbiology at 20km over the Pacific ocean. Aerobiologia 26:35–46

    Article  Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE et al (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum. Mar Sci 306:1709–1714

    CAS  Google Scholar 

  • Taylor GR (1974) Space microbiology. Annu Rev Microbiol 28:121–137

    Article  CAS  Google Scholar 

  • Van Eaton AR, Harper MA, Wilson CJN (2013) High-flying diatoms: widespread dispersal of microorganisms in an explosive volcanic eruption. Geology 41:1187–1190

    Article  Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV et al (2004) Confirmation of the presence of viable but noncultureable bacteria in the stratosphere. Int J Astrobiol 3:13–15

    Article  Google Scholar 

  • Weber P, Greenberg JM (1985) Can spores survive in interstellar space? Nature 316:403–407

    Article  CAS  Google Scholar 

  • Weiss BP, Kirschvink JL, Baudenbacher FJ et al (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science 290:791–795

    Article  CAS  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci U S A 101(22):8281–8284. Epub 2004 May 20

    Article  CAS  Google Scholar 

  • Worth RJ, Sigurdsson S, House CH (2013) Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 13:1155–1165

    Article  CAS  Google Scholar 

  • Yamagishi A (2007) Tanpopo: astrobiology exposure and micrometeorid capture experiments on the EUSO. Biol Sci Space 21:67–75

    Article  Google Scholar 

  • Yang Y, Itahashi S, Yokobori S et al (2008) UV-resistant bacteria isolated from upper troposphere and lower stratosphere. Biol Sci Space 22:18–25

    Article  Google Scholar 

  • Yang Y, Yokobori S, Yamagishi A (2009a) Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol Sci Space 23:151–163

    Article  Google Scholar 

  • Yang Y, Itoh T, Yokobori S et al (2009b) Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59:1862–1866

    Article  CAS  Google Scholar 

  • Yang Y, Itoh T, Yokobori S et al (2010) Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol 60:776–779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawaguchi, Y. (2019). Panspermia Hypothesis: History of a Hypothesis and a Review of the Past, Present, and Future Planned Missions to Test This Hypothesis. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_27

Download citation

Publish with us

Policies and ethics