Skip to main content

The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations

  • Chapter
  • First Online:
Antimicrobial Peptides

Abstract

Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aib:

α-Aminobutyric acid

AMP:

Antimicrobial peptide

ATR FTIR:

Attenuated total reflection Fourier transform infrared

CD:

Circular dichroism

CL:

Cardiolipin

CMC:

Critical micelle concentration

DLPC:

1,2-Lauroyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-zhosphocholine

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPG:

1,2-Dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

DPC:

Dodecylphosphocholine

GUV:

Giant unilamellar vesicle

ITC:

Isothermal titration calorimetry

LUV:

Large unilamellar vesicle

MD:

Molecular dynamics

MIC:

Minimal inhibitory concentration

NMR:

Nuclear magnetic resonance

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

POPS:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine

SMART:

Soft Membranes Adapt and Respond, also Transiently

References

  • Acar JF (2000) Antibiotic synergy and antagonism. Med Clin N Am 84:1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Cho K, Hyun JK, Lee HJ, Jeon YH, Kim NH, Ryu EK, Shin SY, Bang JK (2017) Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 125:551–564

    Article  CAS  PubMed  Google Scholar 

  • Aisenbrey C, Bechinger B (2004) Tilt and rotational pitch angles of membrane-inserted polypeptides from combined 15N and 2H solid-state NMR spectroscopy. Biochemistry 43:10502–10512

    Article  CAS  PubMed  Google Scholar 

  • Aisenbrey C, Bechinger B (2014) Molecular packing of amphipathic peptides on the surface of lipid membranes. Langmuir 30:10374–10383

    Article  CAS  PubMed  Google Scholar 

  • Amos ST, Vermeer LS, Ferguson PM, Kozlowska J, Davy M, Bui TT, Drake AF, Lorenz CD, Mason AJ (2016) Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to gram-negative bacterial inner membranes. Sci Rep 6:37639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnusch CJ, Albada HB, van Vaardegem M, Liskamp RMJ, Sahl HG, Shadkchan Y, Osherov N, Shai Y (2012) Trivalent ultrashort lipopeptides are potent pH dependent antifungal agents. J Med Chem 55:1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Avitabile C, D’Andrea LD, Romanelli A (2014) Circular dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 4:4293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bak M, Bywater RP, Hohwy M, Thomsen JK, Adelhorst K, Jakobsen HJ, Sorensen OW, Nielsen NC (2001) Conformation of alamethicin in oriented phospholipid bilayers determined by N-15 solid-state nuclear magnetic resonance. Biophys J 81:1684–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barns KJ, Weisshaar JC (2013) Real-time attack of LL-37 on single Bacillus subtilis cells. Biochim Biophys Acta 1828:1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barns KJ, Weisshaar JC (2016) Single-cell, time-resolved study of the effects of the antimicrobial peptide alamethicin on Bacillus subtilis. Biochim Biophys Acta 1858:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batenburg AM, van Esch JH, De Kruijff B (1988) Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry 27:2324–2331

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (1996) Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J Mol Biol 263:768–775

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (1997) Structure and functions of channel-forming polypeptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156:197–211

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2004) Membrane-lytic peptides. Crit Rev Plant Sci 23:271–292

    Article  CAS  Google Scholar 

  • Bechinger B (2005) Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR study. Biochim Biophys Acta 1712:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2009) Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Cur Opin Colloid Interface Sci Surfactant 14:349–355

    Article  CAS  Google Scholar 

  • Bechinger B (2011) Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci 17:306–314

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2015) The SMART model: soft membranes adapt and respond, also transiently, to external stimuli. J Pept Sci 21:346–355

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Gorr SU (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like action of linear cationic membrane-active antibiotic peptides. Biochim Biophys Acta 1758:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Salnikov ES (2012) The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 165:282–301

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Sizun C (2003) Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn Reson 18A:130–145

    Article  CAS  Google Scholar 

  • Bechinger B, Shon K, Eck H, Zasloff M, Opella SJ (1990) NMR studies of magainin peptide antibiotics in membranes. Biol Chem Hoppe Seyler 371:758–758

    Google Scholar 

  • Bechinger B, Kim Y, Chirlian LE, Gesell J, Neumann JM, Montal M, Tomich J, Zasloff M, Opella SJ (1991a) Orientations of amphipathic helical peptides in membrane bilayers determined by solid- state NMR spectroscopy. J Biomol NMR 1:167–173

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Zasloff M, Opella SJ (1991b) Solid state NMR of magainin and PGLa peptide antibiotics in bilayers. J Cell Biochem Suppl 15G:84

    Google Scholar 

  • Bechinger B, Zasloff M, Opella SJ (1992) Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state NMR investigation. BiophysJ 62:12–14

    Article  CAS  Google Scholar 

  • Bechinger B, Zasloff M, Opella SJ (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid-state NMR spectroscopy. Protein Sci 2:2077–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Zasloff M, Opella SJ (1998) Structure and dynamics of the antibiotic peptide PGLa in membranes by multidimensional solution and solid-state NMR spectroscopy. Biophys J 74:981–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Ruysschaert JM, Goormaghtigh E (1999) Membrane helix orientation from linear dichroism of infrared attenuated Total reflection spectra. Biophys J 76:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Resende JM, Aisenbrey C (2011) The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 153:115–125

    Article  CAS  PubMed  Google Scholar 

  • Bolen EJ, Holloway PW (1990) Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry 29:9638–9643

    Article  CAS  PubMed  Google Scholar 

  • Bolosov IA, Kalashnikov AA, Panteleev PV, Ovchinnikova TV (2017) Analysis of synergistic effects of antimicrobial peptide arenicin-1 and conventional antibiotics. Bull Exp Biol Med 162:765–768

    Article  CAS  PubMed  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Bortolus M, Dalzini A, Toniolo C, Hahm KS, Maniero AL (2014) Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. J Pept Sci 20:517–525

    Article  CAS  PubMed  Google Scholar 

  • Brown LR (1979) Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance. Biochim Biophys Acta 557:135–148

    Article  CAS  PubMed  Google Scholar 

  • Bruch MD, Dhingra MM, Gierasch LM (1991) Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins Struct Funct Genet 10:130–139

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Yang Y, Uche FI, Hart SR, Li WW, Yuan C (2018) Coupling plant-derived cyclotides to metal surfaces: an antibacterial and antibiofilm study. Int J Mol Sci 19:E793

    Article  PubMed  CAS  Google Scholar 

  • Caputo GA, London E (2003) Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry 42:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Cardoso MH, de Almeida KC, Candido ES, Murad AM, Dias SC, Franco OL (2017) Comparative NanoUPLC-MS(E) analysis between magainin I-susceptible and -resistant Escherichia coli strains. Sci Rep 7:4197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK, Staphylococcus V-R (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    Article  PubMed  Google Scholar 

  • Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84:3751–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JTJ, Hale JD, Elliot M, Hancock REW, Straus SK (2009) Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian Southern Bell Frogs. Biophys J 96:552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JTJ, Hale JD, Elliott M, Hancock REW, Straus SK (2011) The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Biochim Biophys Acta 1808:622–633

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Rangarajan N, Weisshaar JC (2016) Lights, camera, action! Antimicrobial peptide mechanisms imaged in space and time. Trends Microbiol 24:111–122

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Yang Z, Weisshaar JC (2017) Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37. PLoS Pathog 13:e1006481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou S, Shao C, Wang J, Shan A, Xu L, Dong N, Li Z (2016) Short, multiple-stranded beta-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater 30:78–93

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KS, Svetlovics J, McKeown AN, Huskins L, Almeida PF (2011) What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry 50:7919–7932

    Article  CAS  PubMed  Google Scholar 

  • Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O (1991) Antibiotic magainins exert cytolytic activity transformed cell lines through channel formation. Proc Natl Acad Sci U S A 88:3792–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruzeiro-Hansson L, Mouritsen OG (1988) Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta 944:63–72

    Article  CAS  PubMed  Google Scholar 

  • Cuervo JH, Rodriguez B, Houghten RA (1988) The magainins: sequence factors relevant to increased antimicrobial activity and decreased hemolytic activity. Pept Res 1:81–86

    CAS  PubMed  Google Scholar 

  • Dalla Serra M, Cirioni O, Vitale RM, Renzone G, Coraiola M, Giacometti A, Potrich C, Baroni E, Guella G, Sanseverino M, De LS, Scalise G, Amodeo P, Scaloni A (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemistry 47:7888–7899

    Article  CAS  PubMed  Google Scholar 

  • Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, Cross TA (2015) Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci U S A 112:E119–E126

    CAS  PubMed  Google Scholar 

  • del Rio Martinez JM, Zaitseva E, Petersen S, Baaken G, Behrends JC (2015) Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11:119–125

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42:402–409

    Article  CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duclohier H, Molle G, Spach G (1989) Antimicrobial peptide magainin I from xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J 56:1017–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy MT, Su Y, Silvers R, Andreas L, Clark L, Wagner G, Pintacuda G, Emsley L, Griffin RG (2015) Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR. J Biomol NMR 61:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrotti A, Bocchinfuso G, Palleschi A, Rosato N, Salnikov ES, Voievoda N, Bechinger B, Stella L (2015) Molecular dynamics methods to predict peptide location in membranes: LAH4 as a stringent test case. Biochim Biophys Acta 1848:581–592

    Article  CAS  PubMed  Google Scholar 

  • Gallaher J, Wodzinska K, Heimburg T, Bier M (2010) Ion-channel-like behavior in lipid bilayer membranes at the melting transition. Phys Rev E Stat Nonlinear Soft Matter Phys 81:061925

    Article  CAS  Google Scholar 

  • Gazit E, Miller IR, Biggin PC, Sansom MSP, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    Article  CAS  PubMed  Google Scholar 

  • Georgescu J, Munhoz VHO, Bechinger B (2010) NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action and DNA transfection. Biophys J 99:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh C, Haldar J (2015) Membrane-active small molecules: designs inspired by antimicrobial peptides. ChemMedChem 10:1606–1624

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Manjunath GB, Akkapeddi P, Yarlagadda V, Hoque J, Uppu DSSM, Konai MM, Haldar J (2014) Small molecular antibacterial peptoid mimics: the simpler the better! J Med Chem 57:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Harmouche N, Bechinger B, Haldar J (2018) Aryl-alkyl-lysines interact with anionic lipid components of bacterial cell envelope eliciting anti-inflammatory and anti-biofilm properties. ACS Omega 3:9182–9190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannini MG, Poulter L, Gibson BW, Williams DH (1987) Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem J 243:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glattard E, Salnikov ES, Aisenbrey C, Bechinger B (2016) Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys Chem 210:35–44

    Article  CAS  PubMed  Google Scholar 

  • Gogonea V (2015) Structural insights into high density lipoprotein: old models and new facts. Front Pharmacol 6:318

    PubMed  Google Scholar 

  • Gopinath T, Veglia G (2015) Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. J Magn Reson 253:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2015) Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. J Biomol NMR 62:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grage SL, Afonin S, Kara S, Buth G, Ulrich AS (2016) Membrane thinning and thickening induced by membrane-active amphipathic peptides. Front Cell Dev Biol 4:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Grau A, Gomez Fernandez JC, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta 1418:307–319

    Article  CAS  PubMed  Google Scholar 

  • Gregory SM, Cavenaugh A, Journigan V, Pokorny A, Almeida PFF (2008) A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 94:1667–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadley EB, Hancock RE (2010) Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr Top Med Chem 10:1872–1881

    Article  CAS  PubMed  Google Scholar 

  • Hall K, Lee TH, Mechler AI, Swann MJ, Aguilar MI (2014) Real-time measurement of membrane conformational states induced by antimicrobial peptides: balance between recovery and lysis. Sci Rep 4:5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T, Matsuzaki K (2001) Effects of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers 58:437–446

    Article  CAS  PubMed  Google Scholar 

  • Harmouche N, Bechinger B (2018) Lipid-mediated interactions between the amphipathic antimicrobial peptides magainin 2 and PGLa in phospholipid bilayers. Biophys J 115:1033-1044

    Google Scholar 

  • Harpole TJ, Delemotte L (2018) Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim Biophys Acta 1860:909–926

    Article  CAS  Google Scholar 

  • Harzer U, Bechinger B (2000) The alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15 N and 31 P solid-state NMR spectroscopy investigation. Biochemistry 39:13106–13114

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Karal MAS, Levadnyy V, Yamazaki M (2018) Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir 34:3349–3362

    Article  CAS  PubMed  Google Scholar 

  • Hayden RM, Goldberg GK, Ferguson BM, Schoeneck MW, Libardo MD, Mayeux SE, Shrestha A, Bogardus KA, Hammer J, Pryshchep S, Lehman HK, McCormick ML, Blazyk J, Angeles-Boza AM, Fu R, Cotten ML (2015) Complementary effects of host defense peptides piscidin 1 and piscidin 3 on DNA and lipid membranes: biophysical insights into contrasting biological activities. J Phys Chem B 119:15235–15246

    Article  CAS  PubMed  Google Scholar 

  • He K, Ludtke SJ, Heller WT, Huang HW (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71:2669–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz H, Seelig J (2001) Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J 81:1547–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Wieprecht T, Seelig J (2004) Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium. J Phys Chem B 108:4909–4915

    Article  CAS  Google Scholar 

  • Heimburg T (2012) The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys J 103:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson JM, Waring AJ, Separovic F, Lee KYC (2016) Antimicrobial peptides share a common interaction driven by membrane line tension reduction. Biophys J 111:2176–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzl MA, Hofer J, Steinberger P, Pfistershammer K, Zlabinger GJ (2008) Host antimicrobial proteins as endogenous immunomodulators. Immunol Lett 119:4–11

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 20:641–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imura Y, Choda N, Matsuzaki K (2008) Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 95:5757–5765

    Article  PubMed  PubMed Central  Google Scholar 

  • Ines M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112

    Article  CAS  PubMed  Google Scholar 

  • Islam MZ, Alam JM, Tamba Y, Karal MAS, Yamazaki M (2014) The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  CAS  PubMed  Google Scholar 

  • Itkin A, Salnikov ES, Aisenbrey C, Raya J, Raussens V, Ruysschaert JM, Bechinger B (2017) Evidence for heterogeneous conformations of the gamma cleavage site within the amyloid precursor proteins transmembrane domain. ACS Omega 2:6525–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaipuria G, Leonov A, Giller K, Vasa SK, Jaremko L, Jaremko M, Linser R, Becker S, Zweckstetter M (2017) Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat Commun 8:14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean-Francois F, Castano S, Desbat B, Odaert B, Roux M, Metz-Boutigue MH, Dufourc EJ (2008) Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? Biochemistry 47:6394–6402

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandaswamy K, Liew TH, Wang CY, Huston-Warren E, Meyer-Hoffert U, Hultenby K, Schroder JM, Caparon MG, Normark S, Henriques-Normark B, Hultgren SJ, Kline KA (2013) Focal targeting by human beta-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci U S A 110:20230–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karal MA, Alam JM, Takahashi T, Levadny V, Yamazaki M (2015) Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir 31:3391–3401

    Article  CAS  PubMed  Google Scholar 

  • Killian JA, de Planque MRR, van der Wel PCA, Salemink I, De Kruijff B, Greathouse DV, Koeppe RE (1998) Modulation of membrane structure and function by hydrophobic mismatch between proteins and lipids. Pure Appl Chem 70:75–82

    Article  CAS  Google Scholar 

  • Kim C, Spano J, Park EK, Wi S (2009) Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. Biochim Biophys Acta 1788:1482–1496

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Rajasekaran G, Shin SY (2017) LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem 136:428–441

    Article  CAS  PubMed  Google Scholar 

  • Kindrachuk J, Napper S (2010) Structure-activity relationships of multifunctional host defence peptides. Mini-Rev Med Chem 10:596–614

    Article  CAS  PubMed  Google Scholar 

  • Kiss G, Michl H (1962) Über das Giftsekret der Gelbbauchunke Bombina variegata L. Toxicon (Oxford) 1:33–39

    Article  Google Scholar 

  • Klocek G, Seelig J (2008) Melittin interaction with sulfated cell surface sugars. Biochemistry 47:2841–2849

    Article  CAS  PubMed  Google Scholar 

  • Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Hirakura Y, Matsuzaki K (2001) Bacteria-selective synergism between the antimicrobial peptides alpha-helical magainin 2 and cyclic beta-sheet tachyplesin I: toward cocktail therapy. Biochemistry 40:14330–14335

    Article  CAS  PubMed  Google Scholar 

  • Kollmitzer B, Heftberger P, Rappolt M, Pabst G (2013) Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 9:10877–10884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlowska J, Vermeer LS, Rogers GB, Rehnnuma N, Amos SB, Koller G, McArthur M, Bruce KD, Mason AJ (2014) Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli. PLoS Pathog 10:e1004104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroda K, DeGrado WF (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 127:4128–4129

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, Wimley WC, White SH (1995) Leakage of membrane vesicle contents – determination of mechanisms using fluorescence requenching. Biophys J 69:1964–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laub KR, Witschas K, Blicher A, Madsen SB, Luckhoff A, Heimburg T (2012) Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels. Biochim Biophys Acta 1818:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Laurencin M, Simon M, Fleury Y, Baudy-Floc’h M, Bondon A, Legrand B (2018) Selectivity modulation and structure of alpha/aza-beta(3) cyclic antimicrobial peptides. Chemistry 24:6191–6201

    Article  CAS  PubMed  Google Scholar 

  • Lear JD, Wasserman ZR, DeGrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Leber R, Pachler M, Kabelka I, Svoboda I, Enkoller D, Vácha R, Lohner K, Pabst G (2018) Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophys J 114:1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitgeb B, Szekeres A, Manczinger L, Vagvolgyi C, Kredics L (2007) The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 4:1027–1051

    Article  CAS  PubMed  Google Scholar 

  • Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16:199–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohner K (2009) New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen Physiol Biophys 28:105–116

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon EN, Santos-Filho NA, Ramos MA, Bauab TM, Camargo IL, Cilli EM (2016) C-terminal lysine-linked magainin 2 with increased activity against multidrug-resistant bacteria. Protein Pept Lett 23:738–747

    Article  CAS  PubMed  Google Scholar 

  • Loudet C, Khemtemourian L, Aussenac F, Gineste S, Achard MF, Dufourc EJ (2005) Bicelle membranes and their use for hydrophobic peptide studies by circular dichroism and solid state NMR. Biochim Biophys Acta 1724:315–323

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ, He K, Wu Y, Huang HW (1994) Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta 1190:181–184

    Article  CAS  PubMed  Google Scholar 

  • Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2. Biochemistry 34:16764–16769

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makovitzki A, Baram J, Shai Y (2008) Antimicrobial lipopolypeptides composed of palmitoyl Di- and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry 47:10630–10636

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ML, Shai Y (2011) Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cell Mol Life Sci 68:2267–2280

    Article  CAS  PubMed  Google Scholar 

  • Marquette A, Bechinger B (2018) Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomol Ther 8:E18

    Google Scholar 

  • Marquette A, Mason AJ, Bechinger B (2008) Aggregation and membrane permeabilizing properties of designed histidine-containing cationic linear peptide antibiotics. J Pept Sci 14:488–495

    Article  CAS  PubMed  Google Scholar 

  • Marquette A, Lorber B, Bechinger B (2010) Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities. Biophys J 98:2544–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquette A, Salnikov E, Glattard E, Aisenbrey C, Bechinger B (2015) Magainin 2-PGLa interactions in membranes – two peptides that exhibit synergistic enhancement of antimicrobial activity. Curr Top Med Chem 16:65–75

    Article  CAS  Google Scholar 

  • Mason AJ, Martinez A, Glaubitz C, Danos O, Kichler A, Bechinger B (2006) The antibiotic and DNA-transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J 20:320–322

    Article  CAS  PubMed  Google Scholar 

  • Mason AJ, Moussaoui W, Abdelrhaman T, Boukhari A, Bertani P, Marquette A, Shooshtarizaheh P, Moulay G, Boehm N, Guerold B, Sawers RJH, Kichler A, Metz-Boutigue MH, Candolfi E, Prevost G, Bechinger B (2009) Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine rich amphipathic cationic peptides. J Biol Chem 284:119–133

    Article  CAS  PubMed  Google Scholar 

  • Matos PM, Franquelim HG, Castanho MA, Santos NC (2010) Quantitative assessment of peptide-lipid interactions. Ubiquitous fluorescence methodologies. Biochim Biophys Acta 1798:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K (1991) Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta 1063:162–170

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33:3342–3349

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1995a) Translocation of a channel-forming antimicrobial peptide, magainin2, across lipid bilayers by forming a pore. Biochemistry 34:6521–6526

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Miyajima K (1995b) Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry 34:12553–12559

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced flip-flop of phospholipid coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Mitani Y, Akada K, Murase O, Yoneyama S, Zasloff M, Miyajima K (1998) Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37:15144–15153

    Article  CAS  PubMed  Google Scholar 

  • McCafferty DG, Cudic P, Yu MK, Behenna DC, Kruger R (1999) Synergy and duality in peptide antibiotic mechanisms. Curr Opin Chem Biol 3:672–680

    Article  CAS  PubMed  Google Scholar 

  • Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM (2005) Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 89:4043–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medintz IL, Hildebrandt N (2013) Förster resonance energy transfer: from theory to applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Michalek M, Aisenbrey C, Bechinger B (2014) Investigation of membrane penetration depth and interactions of the amino-terminal domain of huntingtin: refined analysis by tryptophan fluorescence measurement. Eur Biophys J 43:347–360

    Article  CAS  PubMed  Google Scholar 

  • Miles AJ, Wallace BA (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev 35:39–51

    Article  CAS  PubMed  Google Scholar 

  • Miles AJ, Wallace BA (2016) Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev 45:4859–4872

    Article  CAS  PubMed  Google Scholar 

  • Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Formaggio F, Toniolo C, Handgraaf JW, Raap J (2009) Structure of self-aggregated alamethicin in ePC membranes detected by pulsed electron-electron double resonance and electron spin Echo envelope modulation spectroscopies. Biophys J 96:3197–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69:3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    Article  CAS  PubMed  Google Scholar 

  • Naito A, Matsumori N, Ramamoorthy A (2018) Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta 1862:307–323

    Article  CAS  Google Scholar 

  • Nishida M, Imura Y, Yamamoto M, Kobayashi S, Yano Y, Matsuzaki K (2007) Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Biochemistry 46:14284–14290

    Article  CAS  PubMed  Google Scholar 

  • North CL, Barranger-Mathys M, Cafiso DS (1995) Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15 N NMR. Biophys J 69:2392–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otzen DE (2017) Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim Biophys Acta 1859:639–649

    Article  CAS  Google Scholar 

  • Oyston PC, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microbiol 58:977–987

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Kuroda K (2010) Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 87:1605–1615

    Article  CAS  PubMed  Google Scholar 

  • Patch JA, Barron AE (2003) Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 125:12092–12093

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Tscheka C, Edwards K, Karlsson G, Heerklotz H (2011) All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim Biophys Acta 1808:2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Huynh Q, Barlehner D, Heerklotz H (2014) Additive and synergistic membrane permeabilization by antimicrobial (lipo)peptides and detergents. Biophys J 106:2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DJ, Tassieri M, Reboud J, Wilson R, Cooper JM (2017) Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proc Natl Acad Sci U S A 114:E8324–E8332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne JE, Dubois AV, Ingram RJ, Weldon S, Taggart CC, Elborn JS, Tunney MM (2017) Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Int J Antimicrob Agents 50:427–435

    Article  CAS  PubMed  Google Scholar 

  • Perrone B, Miles AJ, Salnikov ES, Wallace B, Bechinger B (2014) Lipid- interactions of the LAH4, a peptide with antimicrobial and nucleic transfection activities. Eur Biophys J 43:499–507

    Article  CAS  PubMed  Google Scholar 

  • Pino-Angeles A, Leveritt JM 3rd, Lazaridis T (2016) Pore structure and synergy in antimicrobial peptides of the magainin family. PLoS Comput Biol 12:e1004570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB, Hurt DE, Grigolava M, Chubinidze M, Gogoladze G, Vishnepolsky B, Alekseyev V, Rosenthal A, Tartakovsky M (2016) DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112

    Article  CAS  PubMed  Google Scholar 

  • Porter EA, Weisblum B, Gellman SH (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J Am Chem Soc 124:7324–7330

    Article  CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M, Zocchi I, Molle G, Motta A, Scaloni A (2005) A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proc Natl Acad Sci U S A 102:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L (2006) Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J 91:206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangarajan N, Bakshi S, Weisshaar JC (2013) Localized permeabilization of E. coli membranes by the antimicrobial peptide cecropin A. Biochemistry 52:6584–6594

    Article  CAS  PubMed  Google Scholar 

  • Rank LA, Walsh NM, Liu R, Lim FY, Bok JW, Huang M, Keller NP, Gellman SH, Hull CM (2017) A cationic polymer that shows high antifungal activity against diverse human pathogens. Antimicrob Agents Chemother 61:e00204–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautenbach M, Troskie AM, Vosloo JA (2016a) Antifungal peptides: to be or not to be membrane active. Biochimie 130:132–145

    Article  CAS  PubMed  Google Scholar 

  • Rautenbach M, Troskie AM, Vosloo JA, Dathe ME (2016b) Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi. Biochimie 130:122–131

    Article  CAS  PubMed  Google Scholar 

  • Reijmar K, Edwards K, Andersson K, Agmo Hernandez V (2016) Characterizing and controlling the loading and release of cationic amphiphilic peptides onto and from PEG-stabilized lipodisks. Langmuir 32:12091–12099

    Article  CAS  PubMed  Google Scholar 

  • Resende JM, Moraes CM, Munhoz VHDO, Aisenbrey C, Verly RM, Bertani P, Cesar A, Pilo-Veloso D, Bechinger B (2009) Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 106:16639–16644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende JM, Verly RM, Aisenbrey C, Amary C, Bertani P, Pilo-Veloso D, Bechinger B (2014) Membrane interactions of phylloseptin-1, −2, and −3 peptides by oriented solid-state NMR spectroscopy. Biophys J 107:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins-Smith LA, Doersam JK, Longcore JE, Taylor SK, Shamblin JC, Carey C, Zasloff MA (2002) Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Dev Comp Immunol 26:63–72

    Article  CAS  PubMed  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L (2014) How many AMP molecules kill a bacterium? Spectroscopic determination of PMAP-23 binding to E. Coli. ACS Chem Biol 9:2003–2007

    Article  CAS  PubMed  Google Scholar 

  • Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919

    Article  CAS  PubMed  Google Scholar 

  • Sakoulas G, Kumaraswamy M, Kousha A, Nizet V (2017) Interaction of antibiotics with innate host defense factors against Salmonella enterica serotype Newport. mSphere 2:e00410–e00417

    Article  PubMed  PubMed Central  Google Scholar 

  • Salnikov E, Bechinger B (2011) Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys J 100:1473–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, O’Neil JD, Raap J, Bechinger B (2009a) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15 N and 31 P solid-state NMR spectroscopy. Biophys J 96:86–100

    Article  CAS  PubMed  Google Scholar 

  • Salnikov ES, Mason AJ, Bechinger B (2009b) Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie 91:734–743

    Article  CAS  PubMed  Google Scholar 

  • Salnikov E, Aisenbrey C, Vidovic V, Bechinger B (2010) Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. Biochim Biophys Acta 1798:258–265

    Article  CAS  PubMed  Google Scholar 

  • Salnikov E, Aisenbrey C, Balandin SV, Zhmak MN, Ovchinnikova AY, Bechinger B (2011) Structure and alignment of the membrane-associated antimicrobial peptide arenicin by oriented solid-state NMR spectroscopy. Biochemistry 50:3784–3795

    Article  CAS  PubMed  Google Scholar 

  • Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B (2016a) Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci Rep 6:20895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B (2016b) Alamethicin supramolecular organization in lipid membranes from 19F solid- state NMR. Biophys J 111:2450–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salnikov ES, Anantharamaiah GM, Bechinger B (2018) Supramolecular organization of apolipoprotein A-I – derived peptides within disc-like arrangements. Biophys J 115:467–477 in press

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sani MA, Separovic F (2018) Antimicrobial peptide structures: from model membranes to live cells. Chemistry 24:286–291

    Article  CAS  PubMed  Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophysmol Biol 55:139–235

    Article  CAS  Google Scholar 

  • Sansom MS (1993) Alamethicin and related peptaibols – model ion channels. Eur Biophys J 22:105–124

    Article  CAS  PubMed  Google Scholar 

  • Scherer PG, Seelig J (1989) Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry 28:7720–7727

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194

    Article  CAS  PubMed  Google Scholar 

  • Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666:40–50

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion, and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  • Smart M, Rajagopal A, Liu WK, Ha BY (2017) Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E 96:042405

    Article  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S (2010) Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 216:322–333

    Article  PubMed  CAS  Google Scholar 

  • Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS (2012) Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim Biophys Acta 1818:1764–1776

    Article  CAS  PubMed  Google Scholar 

  • Strandberg E, Zerweck J, Wadhwani P, Ulrich AS (2013) Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J 104:L09–L11

    Google Scholar 

  • Sychev SV, Sukhanov SV, Panteleev PV, Shenkarev ZO, Ovchinnikova TV (2018) Marine antimicrobial peptide arenicin adopts a monomeric twisted beta-hairpin structure and forms low conductivity pores in zwitterionic lipid bilayers. Pept Science 110:e23093

    Article  CAS  Google Scholar 

  • Tamba Y, Yamazaki M (2005) Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 44:15823–15833

    Article  CAS  PubMed  Google Scholar 

  • Tamba Y, Yamazaki M (2009) Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B 113:4846–4852

    Article  CAS  PubMed  Google Scholar 

  • Tamba Y, Ariyama H, Levadny V, Yamazaki M (2010) Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B 114:12018–12026

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP, Hess B, Sansom MS (2002) Analysis and evaluation of channel models: simulations of alamethicin. Biophys J 83:2393–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS (2006a) Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta 1758:1330–1342

    Article  CAS  PubMed  Google Scholar 

  • Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS (2006b) Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem 281:32089–32094

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi LS, Elmore JM, Dang UT, Wallace MJ, Marreddy R, Lee RB, Tan GT, Hurdle JG, Lee RE, Sun D (2018) Solid-phase synthesis and antibacterial activity of cyclohexapeptide wollamide B analogs. ACS Comb Sci 20:172–185

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider JP, Smith JC, Ulmschneider MB, Ulrich AS, Strandberg E (2012) Reorientation and dimerization of the membrane-bound antimicrobial peptide PGLa from microsecond all-atom MD simulations. Biophys J 103:472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usachev KS, Kolosova OA, Klochkova EA, Yulmetov AR, Aganov AV, Klochkov VV (2017) Oligomerization of the antimicrobial peptide protegrin-5 in a membrane-mimicking environment. Structural studies by high-resolution NMR spectroscopy. Eur Biophys J 46:293–300

    Article  CAS  PubMed  Google Scholar 

  • Vacha R, Frenkel D (2014) Simulations suggest possible novel membrane pore structure. Langmuir 30:1304–1310

    Article  CAS  PubMed  Google Scholar 

  • Vaz Gomes A, de Waal A, Berden JA, Westerhoff HV (1993) Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes. Biochemistry 32:5365–5372

    Article  CAS  PubMed  Google Scholar 

  • Verardi R, Traaseth NJ, Shi L, Porcelli F, Monfregola L, De Luca S, Amodeo P, Veglia G, Scaloni A (2011) Probing membrane topology of the antimicrobial peptide distinctin by solid-state NMR spectroscopy in zwitterionic and charged lipid bilayers. Biochim Biophys Acta 1808:34–40

    Article  CAS  PubMed  Google Scholar 

  • Verly RM, Resende JM, Junior EFC, de Magalhães MTC, Guimarães CFCR, Munhoz VHO, Bemquerer MP, Almeida FCL, Santoro MM, Piló-Veloso D, Bechinger B (2017) Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin. Sci Rep 7:40854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeer LS, Marquette A, Schoup M, Fenard D, Galy A, Bechinger B (2016) Simultaneous analysis of secondary structure and light scattering from circular dichroism titrations: application to vectofusin-1. Sci Rep 6:39450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Monteil H, Guichard G (2006) Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol 13:531–538

    Article  CAS  PubMed  Google Scholar 

  • Visscher KM, Medeiros-Silva J, Mance D, Rodrigues J, Daniels M, Bonvin A, Baldus M, Weingarth M (2017) Supramolecular organization and functional implications of K+ channel clusters in membranes. Angew Chem Int Ed Eng 56:13222–13227

    Article  CAS  Google Scholar 

  • Vogt TCB, Bechinger B (1999) The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers: the effects of charges and pH. J Biol Chem 274:29115–29121

    Article  CAS  PubMed  Google Scholar 

  • Voievoda N (2014) Biophysical investigations of the membrane and nucleic acids interactions of the transfection peptide LAH4-L1. PhD thesis, University of Strasbourg PhD

    Google Scholar 

  • Voievoda N, Schulthess T, Bechinger B, Seelig J (2015) Thermodynamic and biophysical analysis of the membrane-association of a histidine-rich peptide with efficient antimicrobial and transfection activities. J Phys Chem B 119:9678–9687

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Takeda A, Tachi T, Matsuzaki K (2002) Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers 64:314–327

    Article  CAS  PubMed  Google Scholar 

  • Wallace BA, Moa B (1984) Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal Biochem 142:317–328

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Kawano R (2016) Channel current analysis for pore-forming properties of an antimicrobial peptide, magainin 1, using the droplet contact method. Anal Sci 32:57–60

    Article  CAS  PubMed  Google Scholar 

  • Wenk M, Seelig J (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37:3909–3916

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C, Gust R, Albada HB, Penkova M, Kramer U, Erdmann R, Metzler-Nolte N, Straus SK, Bremer E, Becher D, Brotz-Oesterhelt H, Sahl HG, Bandow JE (2014) Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA 111:E1409–E1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, de Waal A, Vaz G, Jongsma PM, Riethorst A, Juretic D (1995) Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem 228:257–264

    Article  CAS  PubMed  Google Scholar 

  • Wheaten SA, Ablan FD, Spaller BL, Trieu JM, Almeida PF (2013) Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. J Am Chem Soc 135:16517–16525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieprecht T, Apostolov O, Beyermann M, Seelig J (1999a) Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol 294:785–794

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Beyermann M, Seelig J (1999b) Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38:10377–10378

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Apostolov O, Beyermann M, Seelig J (2000a) Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 39:442–452

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Apostolov O, Seelig J (2000b) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem 85:187–198

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Beyermann M, Seelig J (2002) Thermodynamics of the coil-alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature. Biophys Chem 96:191–201

    Article  CAS  PubMed  Google Scholar 

  • Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B (2017) pH-dependent membrane interactions of the histidine-rich cell penetrating peptide LAH4-L1. Biophys J 113:1290–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Huang HW, Olah GA (1990) Method of oriented circular dichroism. Biophys J 57:797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH (2017) Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Zou R, Zhu Y, Liu B, Yao D, Jiang J, Wu J, Tian H (2014) Magainin II modified polydiacetylene micelles for cancer therapy. Nanoscale 6:14772–14783

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Choi H, Weisshaar JC (2018) Melittin-induced permeabilization, re-sealing, and re-permeabilization of E. coli membranes. Biophys J 114:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuksel E, Karakecili A (2014) Antibacterial activity on electrospun poly(lactide-co-glycolide) based membranes via magainin II grafting. Mater Sci Eng C Mater Biol Appl 45:510–518

    Article  CAS  PubMed  Google Scholar 

  • Zanin LM, Dos Santos Alvares D, Juliano MA, Pazin WM, Ito AS, Ruggiero Neto J (2013) Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy. Eur Biophys J 42:819–831

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zerweck J, Strandberg E, Kukharenko O, Reichert J, Burck J, Wadhwani P, Ulrich AS (2017) Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci Rep 7:13153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Bai X, Zuo Y, Hu Z, Zhang F (2018) Bacillaceae-derived peptide antibiotics since 2000. Peptides 101:10–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the discussion with and contributions from many coworkers and colleagues from our own team and from outside. We are grateful to Ekaterina Zaitseva for her feedback on electrophysiology and Roland Stote for much helping to refine the text on molecular dynamics. Over the years, the Agence Nationale de la Recherche (projects TRANSPEP 07-PCV-0018, ProLipIn 10-BLAN-731, membraneDNP 12-BSV5-0012, MemPepSyn 14-CE34-0001-01, InMembrane 15-CE11-0017-01, Biosupramol 17-CE18-0033-3, and the LabEx Chemistry of Complex Systems 10-LABX-0026_CSC), the IRTG Soft Matter Science (Freiburg, Strasbourg), the Marie-Curie Research and Training Network 33439 of the European Commission BIOCONTROL, the University of Strasbourg, the CNRS, the Région Alsace, the RTRA International Center of Frontier Research in Chemistry, and the French Foundation for Medical Research (FRM) have provided financial support. BB thanks the Institut Universitaire de France for providing additional time to be dedicated to research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Bechinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aisenbrey, C., Marquette, A., Bechinger, B. (2019). The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_4

Download citation

Publish with us

Policies and ethics