Skip to main content

Bacterial Transposable Elements and IS-Excision Enhancer (IEE)

  • Chapter
  • First Online:
DNA Traffic in the Environment

Abstract

Insertion sequence (IS) elements are the simplest transposable elements (or mobile genetic elements) and are widely distributed in bacteria. The transposition and proliferation of IS elements induce not only insertional gene inactivation and modification of gene expression but also a wide range of genomic rearrangements, such as deletions, inversions, and duplications. IS-mediated bacterial genome diversification has been extensively studied in enterohemorrhagic Escherichia coli (EHEC). Excision of IS elements occurs frequently in O157, the major serogroup of EHEC isolated from humans, and IS-excision enhancer (IEE) promotes IS excision from the O157 genome in a transposase-dependent manner. IEE promotes the excision of IS elements belonging to several IS families, and various types of genomic deletions are also generated via IEE-promoted IS excision in O157. In addition, IEE has been found in specific lineages of enterotoxigenic E. coli (ETEC) strains isolated from swine, in which the iee genes are located on integrative elements that are similar to SpLE1 of EHEC O157. iee-positive ETEC lineages also contain multiple copies of IS elements at genomic locations that exhibit significant variations between strains, as observed in O157. These data and the phylogeny of IEE homologs found in a broad range of bacteria suggest that IEE has coevolved with IS elements and plays pivotal roles in bacterial genome evolution by inducing IS removal and genomic deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinzelle L, Izsvak Z, Ivics Z. Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci. 2009;66:1073–93.

    Article  CAS  Google Scholar 

  2. Chandler M, Mahillon J. Insertion sequences revisited. In: Craig NL, Craigie R, Gellert M, Lambowitz AM, editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 305–66.

    Chapter  Google Scholar 

  3. Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BA, Sanderson KE, Liu SL. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J Bacteriol. 2005;187:2638–50.

    Article  CAS  Google Scholar 

  4. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G 3rd, Rose DJ, Darling A, Mau B, Perna NT, Payne SM, Runyen-Janecky LJ, Zhou S, Schwartz DC, Blattner FR. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun. 2003;71:2775–86.

    Article  CAS  Google Scholar 

  5. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.

    Article  CAS  Google Scholar 

  6. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev. 1998;62:725–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandler M, Fayet O, Rousseau P, Hoang B, Duval-Valentin G. Copy-out-paste-in transposition of IS911: a major transposition pathway. In: Craig NL, Chandler M, Gellert M, Lambowitz AM, Rice PA, Sandmeyer SB, editors. Mobile DNA III. Washington, DC: ASM Press; 2014. p. 591–607.

    Google Scholar 

  8. Synder L, Champness W. Molecular genetics of bacteria. 2nd ed. Washington, DC: ASM Press; 2003.

    Google Scholar 

  9. Stephanou NC, Gao F, Bongiorno P, Ehrt S, Schnappinger D, Shuman S, Glickman MS. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol. 2007;189:5237–46.

    Article  CAS  Google Scholar 

  10. Foster TJ, Lundblad V, Hanley-Way S, Halling SM, Kleckner N. Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell. 1981;23:215–27.

    Article  CAS  Google Scholar 

  11. Nagel R, Chan A. Enhanced Tn10 and mini-Tn10 precise excision in DNA replication mutants of Escherichia coli K12. Mutat Res. 2000;459:275–84.

    Article  CAS  Google Scholar 

  12. Mead PS, Griffin PM. Escherichia coli O157:H7. Lancet. 1998;352:1207–12.

    Article  CAS  Google Scholar 

  13. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001;8:11–22.

    Article  CAS  Google Scholar 

  14. Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K, Yutsudo CH, Kubota Y, Yamaichi Y, Iida T, Yamamoto K, Honda T, Han CG, Ohtsubo E, Kasamatsu M, Hayashi T, Kuhara S, Shinagawa H. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res. 1998;5:1–9.

    Article  CAS  Google Scholar 

  15. Kusumoto M, Nishiya Y, Kawamura Y. Reactivation of insertionally inactivated Shiga toxin 2 genes of Escherichia coli O157:H7 caused by nonreplicative transposition of the insertion sequence. Appl Environ Microbiol. 2000;66:1133–8.

    Article  CAS  Google Scholar 

  16. Sekine Y, Eisaki N, Ohtsubo E. Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol. 1994;235:1406–20.

    Article  CAS  Google Scholar 

  17. Kusumoto M, Nishiya Y, Kawamura Y, Shinagawa K. Identification of an insertion sequence, IS1203 variant, in a Shiga toxin 2 gene of Escherichia coli O157:H7. J Biosci Bioeng. 1999;87:93–6.

    Article  CAS  Google Scholar 

  18. Ohnishi M, Kurokawa K, Hayashi T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 2001;9:481–5.

    Article  CAS  Google Scholar 

  19. Ohnishi M, Terajima J, Kurokawa K, Nakayama K, Murata T, Tamura K, Ogura Y, Watanabe H, Hayashi T. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci U S A. 2002;99:17043–8.

    Article  CAS  Google Scholar 

  20. Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T. Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res. 2006;13:3–14.

    Article  CAS  Google Scholar 

  21. Iguchi A, Iyoda S, Terajima J, Watanabe H, Osawa R. Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome. Gene. 2006;372:199–207.

    Article  CAS  Google Scholar 

  22. Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, Watanabe H, Hayashi T. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res. 2009a;19:1809–16.

    Article  CAS  Google Scholar 

  23. Ooka T, Terajima J, Kusumoto M, Iguchi A, Kurokawa K, Ogura Y, Asadulghani M, Nakayama K, Murase K, Ohnishi M, Iyoda S, Watanabe H, Hayashi T. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J Clin Microbiol. 2009b;47:2888–94.

    Article  CAS  Google Scholar 

  24. Davis MA, Hancock DD, Besser TE, Call DR. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol. 2003;41:1843–9.

    Article  CAS  Google Scholar 

  25. Terajima J, Izumiya H, Iyoda S, Mitobe J, Miura M, Watanabe H. Effectiveness of pulsed-field gel electrophoresis for the early detection of diffuse outbreaks due to Shiga toxin-producing Escherichia coli in Japan. Foodborne Pathog Dis. 2006;3:68–73.

    Article  CAS  Google Scholar 

  26. Asano Y, Karasudani T, Tanaka H, Matsumoto J, Okada M, Nakamura K, Kondo H, Shinomiya H. Characterization of the Escherichia coli O157:H7 outbreak strain whose Shiga toxin 2 gene is inactivated by IS1203v insertion. Jpn J Infect Dis. 2013;66:201–6.

    Article  Google Scholar 

  27. Hirai S, Yokoyama E, Etoh Y, Seto J, Ichihara S, Suzuki Y, Maeda E, Sera N, Horikawa K, Sato S, Yamamoto T. Putative classification of clades of enterohemorrhagic Escherichia coli O157 using an IS-printing system. Lett Appl Microbiol. 2015;61:267–73.

    Article  CAS  Google Scholar 

  28. Ding H, Huang L, Mao X, Zou Q. Characterization of stx2 and its variants in Escherichia coli O157:H7 isolated from patients and animals. Afr J Biotechnol. 2011;10:2991–8.

    Article  CAS  Google Scholar 

  29. Harada T, Hirai Y, Itou T, Hayashida M, Seto K, Taguchi M, Kumeda Y. Laboratory investigation of an Escherichia coli O157:H7 strain possessing a vtx2c gene with an IS1203 variant insertion sequence isolated from an asymptomatic food handler in Japan. Diagn Microbiol Infect Dis. 2013;77:176–8.

    Article  CAS  Google Scholar 

  30. Jinneman KC, Weagant SD, Johnson JM, Abbott SL, Hill WE, Tenge BJ, Dang N-L, Ramsden R, Omiecinski CJ. A large insertion in the Shiga-like toxin 2 gene (stx2) of an Escherichia coli O157:H7 clinical isolate. Int J Food Microbiol. 2000;57:115–24.

    Article  CAS  Google Scholar 

  31. Okitsu T, Kusumoto M, Suzuki R, Sata S, Nishiya Y, Kawamura Y, Yamai S. Identification of Shiga toxin-producing Escherichia coli possessing insertionally inactivated Shiga toxin gene. Microbiol Immunol. 2001;45:319–22.

    Article  CAS  Google Scholar 

  32. Kusumoto M, Suzuki R, Nishiya Y, Okitsu T, Oka M. Host-dependent activation of IS1203v excision in Shiga toxin-producing Escherichia coli. J Biosci Bioeng. 2004;97:406–11.

    Article  CAS  Google Scholar 

  33. Kusumoto M, Ooka T, Nishiya Y, Ogura Y, Saito T, Sekine Y, Iwata T, Akiba M, Hayashi T. Insertion sequence-excision enhancer removes transposable elements from bacterial genomes and induces various genomic deletions. Nat Commun. 2011;2:152.

    Article  Google Scholar 

  34. Turlan C, Chandler M. IS1-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J. 1995;14:5410–21.

    Article  CAS  Google Scholar 

  35. Sekine Y, Aihara K, Ohtsubo E. Linearization and transposition of circular molecules of insertion sequence IS3. J Mol Biol. 1999;294:21–34.

    Article  CAS  Google Scholar 

  36. Duval-Valentin G, Marty-Cointin B, Chandler M. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J. 2004;23:3897–906.

    Article  CAS  Google Scholar 

  37. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2:123–40.

    Article  CAS  Google Scholar 

  38. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201.

    Article  CAS  Google Scholar 

  39. Frydendahl K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol. 2002;85:169–82.

    Article  CAS  Google Scholar 

  40. Holland RE. Some infectious causes of diarrhea in young farm animals. Clin Microbiol Rev. 1990;3:345–75.

    Article  CAS  Google Scholar 

  41. Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6:17–39.

    Article  CAS  Google Scholar 

  42. Kusumoto M, Hikoda Y, Fujii Y, Murata M, Miyoshi H, Ogura Y, Gotoh Y, Iwata T, Hayashi T, Akiba M. Emergence of a multidrug-resistant shiga toxin-producing enterotoxigenic Escherichia coli lineage in diseased swine in Japan. J Clin Microbiol. 2016;54:1074–81.

    Article  CAS  Google Scholar 

  43. Kusumoto M, Fukamizu D, Ogura Y, Yoshida E, Yamamoto F, Iwata T, Ooka T, Akiba M, Hayashi T. Lineage-specific distribution of insertion sequence excision enhancer in enterotoxigenic Escherichia coli isolated from swine. Appl Environ Microbiol. 2014;80:1394–402.

    Article  Google Scholar 

  44. Yin X, Wheatcroft R, Chambers JR, Liu B, Zhu J, Gyles CL. Contributions of O island 48 to adherence of enterohemorrhagic Escherichia coli O157:H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl Environ Microbiol. 2009;75:5779–86.

    Article  CAS  Google Scholar 

  45. Lundblad V, Taylor AF, Smith GR, Kleckner N. Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn10 and Tn5. Proc Natl Acad Sci U S A. 1984;81:824–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research Project for Improving Animal Disease Prevention Technologies to Combat Antimicrobial Resistance 2017-2021 FY of the Ministry of Agriculture, Forestry, and Fisheries, Japan and by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) under grant number 15K08484 to M.K. This work was also supported in part by a Grant-in-Aid from Ministry of Health, Labor, and Welfare, Japan (H29-shokuhin-ippan-001) to T.H. and by the Japan Agency for Medical Research and Development (AMED) under grant number JP17fk0108308j0003 to T.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kusumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusumoto, M., Hayashi, T. (2019). Bacterial Transposable Elements and IS-Excision Enhancer (IEE). In: Nishida, H., Oshima, T. (eds) DNA Traffic in the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-3411-5_8

Download citation

Publish with us

Policies and ethics