Skip to main content

The Utilization of CO2, Alkaline Solid Waste, and Desalination Reject Brine in Soda Ash Production

  • Chapter
  • First Online:
CO2 Separation, Purification and Conversion to Chemicals and Fuels

Abstract

Conventional Solvay process, which utilizes CO2 to synthesize sodium carbonate, has been well-known for more than a century, but the only purpose of this process is to produce soda ash. Annually, significant amounts of CO2 are converted into soda ash using Solvay process; however, this conventional process does not sustain CO2 and waste cycle. Increasing the awareness of global warming and climate change linking to CO2 emission has pressured this industry to move for a more eco-friendly process that should exploit its potential for CO2 utilization and sequestration and thus contribute to both CO2 emission and waste management. In conventional Solvay process, to produce one mole of Na2CO3, at least one mole of CO2 might be emitted to atmosphere due to the use of CaO. Therefore, a number of studies have been done to explore novel processes or to modify the Solvay process in order for it to engage more in CO2 mitigation. This chapter introduces the most up-to-date modified Solvay process and novel pathways to produce soda ash and baking soda in the consideration of waste and CO2 utilization. Simultaneous waste and CO2 utilization offers a great opportunity for shifting to a green production, not only soda ash industry but others where their exhausted CO2, alkaline solid wastes, or reject brine can be utilized. However, there are challenges which require further research and technological development initiatives for the idea to be industrially implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C3A:

Ca3Al2O6

H:

H2O

AN:

NH4NO3

AC:

NH4Cl

AA:

CH3COONH4

AS:

(NH4)2SO4

MAE:

Methyl aminoethanol

LDH:

Al layered double hydroxide

HT:

Hydrotalcite-like materials

Cl–HT:

Chloride-form hydrotalcite

AOD:

Argon oxygen decarburization

BOF:

Basic oxygen furnace

BF:

Blast furnace

EAF:

Electric arc furnace

MW:

Municipal solid waste

XRD:

X-ray diffraction

EDS:

Energy dispersive X-ray spectroscopy

References

  1. Salman M, Cizer Ö, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Van Balen K (2014) Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2 sequestering construction material. Chem Eng J 246:39–52

    Article  Google Scholar 

  2. Pan S-Y, Chen Y-H, Chen C-D, Shen A-L, Lin M, Chiang P-C (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49:12380–12387

    Article  Google Scholar 

  3. Chen K-W, Pan S-Y, Chen C-T, Chen Y-H, Chiang P-C (2016) High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement. J Clean Prod 124:350–360

    Article  Google Scholar 

  4. Pan S-Y, Chung T-C, Ho C-C, Hou C-J, Chen Y-H, Chiang P-C (2017) CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain. Sci. Rep. 7:17227

    Article  Google Scholar 

  5. Pei S-L, Pan S-Y, Gao X, Fang Y-K, Chiang P-C (2018) Efficacy of carbonated petroleum coke fly ash as supplementary cementitious materials in cement mortars. J Clean Prod 180:689–697

    Article  Google Scholar 

  6. Sanna A, Dri M, Hall MR, Maroto-Valer M (2012) Waste materials for carbon capture and storage by mineralisation (CCSM)—a UK perspective. Appl Energy 99:545–554

    Article  Google Scholar 

  7. Sanna A (2015) Reduction of CO2 emissions through waste materials recycling by mineral carbonation. Handb Clean Energy Syst

    Google Scholar 

  8. Xie H, Yue H, Zhu J, Liang B, Li C, Wang Y, Xie L, Zhou X (2015) Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals. Engineering 1:150–157

    Article  Google Scholar 

  9. Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22

    Article  Google Scholar 

  10. W.S. Association (2016) Steel industry by-products, vol 2

    Google Scholar 

  11. Blissett RS, Rowson NA (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    Article  Google Scholar 

  12. Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manage 90:2377–2386

    Article  Google Scholar 

  13. Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N (2017) Phosphogypsum: potential uses and problems—a review. Int J Environ Stud 74:558–567

    Article  Google Scholar 

  14. Hammas I, Horchani-Naifer K, Férid M (2013) Solubility study and valorization of phosphogypsum salt solution. Int J Miner Process 123:87–93

    Article  Google Scholar 

  15. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A (2015) Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Environ Sci 7:1925

    Google Scholar 

  16. Mattila HP, Zevenhoven R (2015) Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts. Front Energy Res 3

    Google Scholar 

  17. Zhao H, Li H, Bao W, Wang C, Li S, Lin W (2015) Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure. J CO2 Utilization 11:10–19

    Google Scholar 

  18. Romero-Hermida I, Santos A, Pérez-López R, García-Tenorio R, Esquivias L, Morales-Flórez V (2017) New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J CO2 Utilization 18:15–22

    Article  Google Scholar 

  19. Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, Santos A, Esquivias L (2011) Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J Hazard Mater 196:431–435

    Article  Google Scholar 

  20. Azdarpour A, Asadullah M, Junin R, Manan M, Hamidi H, Mohammadian E (2014) Direct carbonation of red gypsum to produce solid carbonates. Fuel Process Technol 126:429–434

    Article  Google Scholar 

  21. Bao W, Zhao H, Li H, Li S, Lin W (2017) Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure. J CO2 Utilization 17:125–136

    Google Scholar 

  22. Kandil A-HT, Cheira MF, Gado HS, Soliman MH, Akl HM (2017) Ammonium sulfate preparation from phosphogypsum waste. J Radiat Res Appl Sci 10:24–33

    Article  Google Scholar 

  23. Abbas KK (2011) Study on the production of ammonium sulfate fertilizer from phosphogypsum. Eng Technol J 29:814

    Google Scholar 

  24. Chou M-IM, Bruinius JA, Benig V, Chou S-FJ, Carty RH (2005) Producing ammonium sulfate from flue gas desulfurization by-products. Energy Sour 27:1061–1071

    Article  Google Scholar 

  25. Msila X, Billing DG, Barnard W (2016) Capture and storage of CO2 into waste phosphogypsum: the modified Merseburg process. Clean Technol Environ Policy 18:2709–2715

    Article  Google Scholar 

  26. Ahmed M, Shayya WH, Hoey D, Mahendran A, Morris R, Al-Handaly J (2000) Use of evaporation ponds for brine disposal in desalination plants. Desalination 130:155–168

    Article  Google Scholar 

  27. Voutchkov N (2011) Overview of seawater concentrate disposal alternatives. Desalination 273:205–219

    Article  Google Scholar 

  28. Kaplan R, Mamrosh D, Salih HH, Dastgheib SA (2017) Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site. Desalination 404:87–101

    Article  Google Scholar 

  29. Krishnaveni V, Palanivelu K (2013) Recovery of sodium bicarbonate from textile dye bath effluent using carbon dioxide gas. Ind Eng Chem Res 52:16922–16928

    Article  Google Scholar 

  30. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348

    Article  Google Scholar 

  31. Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola F-J (2014) Comparative study of brine management technologies for desalination plants. Desalination 336:32–49

    Article  Google Scholar 

  32. Joo SH, Tansel B (2015) Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manage 150:322–335

    Article  Google Scholar 

  33. Dawoud MA (2012) Environmental impacts of seawater desalination: Arabian Gulf case study

    Google Scholar 

  34. Ahmed M, Shayya WH, Hoey D, Al-Handaly J (2001) Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates. Desalination 133:135–147

    Article  Google Scholar 

  35. Pérez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283

    Article  Google Scholar 

  36. Giwa A, Dufour V, Al Marzooqi F, Al Kaabi M, Hasan SW (2017) Brine management methods: recent innovations and current status. Desalination 407:1–23

    Article  Google Scholar 

  37. Ahmad N, Baddour RE (2014) A review of sources, effects, disposal methods, and regulations of brine into marine environments. Ocean Coast Manag 87:1–7

    Article  Google Scholar 

  38. Dziedzic D, Gross KB, Gorski RA, Johnson JT (2006) Feasibility study of using brine for carbon dioxide capture and storage from fixed sources. J Air Waste Manag Assoc 56:1631–1641

    Article  Google Scholar 

  39. Bang J-H, Yoo Y, Lee S-W, Song K, Chae S (2017) CO2 mineralization using brine discharged from a seawater desalination plant. Minerals 7:207

    Article  Google Scholar 

  40. Breunig HM, Birkholzer JT, Borgia A, Oldenburg CM, Price PN, McKone TE (2013) Regional evaluation of brine management for geologic carbon sequestration. Int J Greenhouse Gas Control 14:39–48

    Article  Google Scholar 

  41. El-Naas MH, Al-Marzouqi AH, Chaalal O (2010) A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251:70–74

    Article  Google Scholar 

  42. Vito CD, Mignardi S, Ferrini V, Martin RF (2011) Reject brines from desalination as possible sources for environmental technologies. In: Ning RY (ed) Expanding issues in desalination

    Google Scholar 

  43. Druckenmiller ML, Maroto-Valer MM (2005) Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Process Technol 86:1599–1614

    Article  Google Scholar 

  44. Soong Y, Fauth DL, Howard BH, Jones JR, Harrison DK, Goodman AL, Gray ML, Frommell EA (2006) CO2 sequestration with brine solution and fly ashes. Energy Convers Manag 47:1676–1685

    Article  Google Scholar 

  45. Zhao Y, Zhang Y, Liu J, Gao J, Ji Z, Guo X, Liu J, Yuan J (2017) Trash to treasure: seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source. Desalination 407:85–92

    Article  Google Scholar 

  46. Wang W, Hu M, Zheng Y, Wang P, Ma C (2011) CO2 Fixation in Ca2+/Mg2+ rich aqueous solutions through enhanced carbonate precipitation. Ind Eng Chem Res 50:8333–8339

    Article  Google Scholar 

  47. Wagialla KM, Al-Mutaz IS, El-Dahshan ME (1992) The manufacture of soda ash in the Arabian Gulf. Int J Prod Econ 27:145–153

    Article  Google Scholar 

  48. Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16:833–841

    Article  Google Scholar 

  49. Jadeja RN, Tewari A (2009) Effect of soda ash industry effluent on agarophytes, alginophytes and carrageenophyte of west coast of India. J Hazard Mater 162:498–502

    Article  Google Scholar 

  50. Kasikowski T, Buczkowski R, Cichosz M, Lemanowska E (2007) Combined distiller waste utilisation and combustion gases desulphurisation method: the case study of soda-ash industry. Resour Conserv Recycl 51:665–690

    Article  Google Scholar 

  51. Kasikowski T, Buczkowski R, Cichosz M (2008) Utilisation of synthetic soda-ash industry by-products. Int J Prod Econ 112:971–984

    Article  Google Scholar 

  52. Kasikowski T, Buczkowski R, Dejewska B, Peszyńska-Białczyk K, Lemanowska E, Igliński B (2004) Utilization of distiller waste from ammonia-soda processing. J Clean Prod 12:759–769

    Article  Google Scholar 

  53. Kasikowski T, Buczkowski R, Lemanowska E (2004) Cleaner production in the ammonia–soda industry: an ecological and economic study. J Environ Manage 73:339–356

    Article  Google Scholar 

  54. de Carvalho Pinto PC, da Silva TR, Linhares FM, de Andrade FV, de Oliveira Carvalho MM, de Lima GM (2016) A integrated route for CO2 capture in the steel industry and its conversion into CaCO3 using fundamentals of Solvay process. Clean Technol Environ Policy 18:1123–1139

    Google Scholar 

  55. Trypuć M, Białowicz K (2011) CaCO3 production using liquid waste from Solvay method. J Clean Prod 19:751–756

    Article  Google Scholar 

  56. Shan Y, Liu Z, Guan D (2016) CO2 emissions from China’s lime industry. Appl Energy 166:245–252

    Article  Google Scholar 

  57. Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics—towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559

    Article  Google Scholar 

  58. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 Capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    Article  Google Scholar 

  59. Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven R (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47:7104–7111

    Article  Google Scholar 

  60. Jo H, Park S-H, Jang Y-N, Chae S-C, Lee P-K, Jo HY (2014) Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chem Eng J 254:313–323

    Article  Google Scholar 

  61. Said A, Mattila H-P, Järvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771

    Article  Google Scholar 

  62. He L, Yu D, Lv W, Wu J, Xu M (2013) A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Ind Eng Chem Res 52:15138–15145

    Article  Google Scholar 

  63. de Carvalho Pinto PC, de Oliveira Carvalho MM, Linhares FM, da Silva TR, de Lima GM (2015) A cleaner production of sodium hydrogen carbonate: partial replacement of lime by steel slag milk in the ammonia recovery step of the Solvay process. Clean Technol Environ Policy 17:2311–2321

    Google Scholar 

  64. Sun Y, Yao M-S, Zhang J-P, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173:437–445

    Article  Google Scholar 

  65. Said A, Laukkanen T, Järvinen M (2016) Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Appl Energy 177:602–611

    Article  Google Scholar 

  66. Yong S, Ping ZJ, Lian Z (2016) NH4Cl selective leaching of basic oxygen furnace slag: optimization study using response surface methodology. Environ Progress Sustain Energy 35:1387–1394

    Article  Google Scholar 

  67. Sanni E, Sebastian T, Hannu R, Justin S, Arshe S, Carl-Johan F, Ron Z (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res Int 80:415–421

    Google Scholar 

  68. Hall C, Large DJ, Adderley B, West HM (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162

    Article  Google Scholar 

  69. Hosseini T, Selomulya C, Haque N, Zhang L (2014) Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling. Energy Fuels 28:6481–6493

    Article  Google Scholar 

  70. Lee SM, Lee SH, Jeong SK, Youn MH, Nguyen DD, Chang SW, Kim SS (2017) Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. J Ind Eng Chem 53:233–240

    Article  Google Scholar 

  71. Lee S, Kim JW, Chae S, Bang JH, Lee SW (2016) CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. J CO2 Utilization 16:336–345

    Article  Google Scholar 

  72. Tong Z, Ma G, Zhang X, Cai Y (2017) Microwave-supported leaching of electric arc furnace (EAF) slag by ammonium Salts. Minerals 7:119

    Article  Google Scholar 

  73. Mattila HP, Zevenhoven R (2014) Chapter ten—production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues. In: Aresta M, van Eldik R (eds) Advances in inorganic chemistry. Academic Press, pp 347–384

    Google Scholar 

  74. Sun Y, Parikh V, Zhang L (2012) Sequestration of carbon dioxide by indirect mineralization using victorian brown coal fly ash. J Hazard Mater 209–210:458–466

    Article  Google Scholar 

  75. Jo H, Lee M-G, Park J, Jung K-D (2017) Preparation of high-purity nano-CaCO3 from steel slag. Energy 120:884–894

    Article  Google Scholar 

  76. Park HK, Bae MW, Nam IH, Kim S-G (2013) Acid leaching of CaOSiO2 resources. J Ind Eng Chem 19:633–639

    Article  Google Scholar 

  77. Solvay E (1882) Manufacture of soda by the ammonia process. USA

    Google Scholar 

  78. El Naas M (2011) Reject brine management, desalination, trends and technologies. InTech, Croatia, pp 237–252

    Google Scholar 

  79. El-Naas M, Ali A-M, Omar C (2010) A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251:70–74

    Article  Google Scholar 

  80. Joris K, Andrea R, Toon VH, Arjan VH, Wim T, Andre F (2010) The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmos Environ 44:1369–1385

    Article  Google Scholar 

  81. Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI (2009) CO2 capture by aqueous amines and aqueous ammonia—a comparison. Energy Procedia 1:949–954

    Article  Google Scholar 

  82. Huang HP, Shi Y, Li W, Chang SG (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuels 15:263–268

    Article  Google Scholar 

  83. Dindi A, Quang DV, Abu-Zahra MR (2015) Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine. Appl Energy 154:298–308

    Article  Google Scholar 

  84. Abdel-Aal HK, Ibrahim AA, Shalabi MA, Al-Harbi DK (1996) Chemical separation process for highly saline water 1. Parametric Exp Invest Ind Eng Chem Res 35:799–804

    Article  Google Scholar 

  85. Abdel-Aal H, Ibrahim A, Shalabi M, Al-Harbi D (1997) Dual-purpose chemical desalination process. Desalination 113:19–25

    Article  Google Scholar 

  86. Dindi A, Quang DV, El Hadri N, Rayer A, Abdulkadir A, Abu-Zahra MR (2014) Potential for the simultaneous capture and utilization of CO2 using desalination reject brine: amine solvent selection and evaluation. Energy Procedia 63:7947–7953

    Article  Google Scholar 

  87. Vaidya PD, Kenig EY (2007) CO2-alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol 30:1467–1474

    Article  Google Scholar 

  88. Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M (2013) Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2 (aq) with sterically hindered Amines. Environ Sci Technol 47:1163–1169

    Article  Google Scholar 

  89. El-Naas MH, Mohammad AF, Suleiman MI, Al Musharfy M, Al-Marzouqi AH (2017) A new process for the capture of CO2 and reduction of water salinity. Desalination 411:69–75

    Google Scholar 

  90. Dindi A, Quang DV, AlNashef I, Abu-Zahra MR (2018) A process for combined CO2 utilization and treatment of desalination reject brine. Desalination 442:62–74

    Article  Google Scholar 

  91. Theiss FL, Sear-Hall MJ, Palmer SJ, Frost RL (2012) Zinc aluminium layered double hydroxides for the removal of iodine and iodide from aqueous solutions. Desalin Water Treat 39:166–175

    Article  Google Scholar 

  92. Nenoff TM, Sasan K, Brady PV, Krumhansl JL, Paap S, Heimer B, Howe K, Stoll Z, Stomp J (2017) Waste water for power generation via energy efficient selective silica separations. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    Google Scholar 

  93. Kameda T, Yabuuchi F, Yoshioka T, Uchida M, Okuwaki A (2003) New method of treating dilute mineral acids using magnesium–aluminum oxide. Water Res 37:1545–1550

    Article  Google Scholar 

  94. Setshedi K, Ren J, Aoyi O, Onyango MS (2012) Removal of Pb (II) from aqueous solution using hydrotalcite-like nanostructured material. Int J Phys Sci 7:63–72

    Google Scholar 

  95. Douglas G, Wendling L, Pleysier R, Trefry M (2010) Hydrotalcite formation for contaminant removal from Ranger mine process water. Mine Water Environ 29:108–115

    Article  Google Scholar 

  96. Kameda T, Yoshioka T, Hoshi T, Uchida M, Okuwaki A (2005) The removal of chloride from solutions with various cations using magnesium–aluminum oxide. Sep Purif Technol 42:25–29

    Article  Google Scholar 

  97. Kameda T, Oba J, Yoshioka T (2017) Simultaneous removal of Cl and SO42− from seawater using Mg–Al oxide: kinetics and equilibrium studies. Appl Water Sci 7:129–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. M. Abu Zahra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quang, D.V., Dindi, A., Abu Zahra, M.R.M. (2019). The Utilization of CO2, Alkaline Solid Waste, and Desalination Reject Brine in Soda Ash Production. In: Winter, F., Agarwal, R., Hrdlicka, J., Varjani, S. (eds) CO2 Separation, Purification and Conversion to Chemicals and Fuels. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3296-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3296-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3295-1

  • Online ISBN: 978-981-13-3296-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics