Skip to main content

Formation Mechanism of Fullerenes/Metallofullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

The formation mechanism of fullerenes and metallofullerenes has been an intriguing question for chemists, physicists, and astronomers. Different mechanisms with various precursors, including small carbon fragments, polyaromatic hydrocarbons, and graphene, have been proposed and studied. Meanwhile, the discovery of multiple structural links among metallofullerene cage structures also suggests many fullerene and metallofullerene cages share the same stream of precursors. Understanding the formation of fullerenes and metallofullerenes will provide critical insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Osawa E (1970) Superaromaticity. Kagaku 25:854–863. https://ci.nii.ac.jp/naid/10021261422/en/

    CAS  Google Scholar 

  2. Ōsawa E, Kroto HW, Fowler PW et al (1993) The evolution of the football structure for the C60 molecule: a retrospective. Philos Trans R Soc A 343(1667):1–8. https://doi.org/10.1098/rsta.1993.0035

    Article  Google Scholar 

  3. Schultz HP (1965) Topological organic chemistry. Polyhedranes and Prismanes. J Org Chem 30(5):1361–1364. https://doi.org/10.1021/jo01016a005

    Article  CAS  Google Scholar 

  4. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63(6):843–892. https://doi.org/10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  5. Bochvar D, Galpern E (1973) Hypothetical systems-carbododecahedron, s-icosahedrone and carbo-s-icosahedron. Dokl Akad Nauk SSSR 209(3):610–612

    CAS  Google Scholar 

  6. Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50(3):675–683. https://doi.org/10.1016/0022-0248(80)90013-5

    Article  CAS  Google Scholar 

  7. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81(7):3322–3330. https://doi.org/10.1063/1.447994

    Article  CAS  Google Scholar 

  8. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  9. Klein DJ, Schmalz TG, Hite GE, Seitz WA (1986) Resonance in C60 buckminsterfullerene. J Am Chem Soc 108(6):1301–1302. https://doi.org/10.1021/ja00266a032

    Article  CAS  Google Scholar 

  10. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128(5):501–503. https://doi.org/10.1016/0009-2614(86)80661-3

    Article  CAS  Google Scholar 

  11. Zhang QL, O’Brien SC, Heath JR et al (1986) Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot. J Phys Chem 90(4):525–528. https://doi.org/10.1021/j100276a001

    Article  CAS  Google Scholar 

  12. Iijima S (1987) The 60-carbon cluster has been revealed. J Phys Chem 91(13):3466–3467. https://doi.org/10.1021/j100297a002

    Article  CAS  Google Scholar 

  13. O’Brien SC, Heath JR, Curl RF, Smalley RE (1988) Photophysics of buckminsterfullerene and other carbon cluster ions. J Chem Phys 88(1):220–230. https://doi.org/10.1063/1.454640

    Article  Google Scholar 

  14. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) Elemental carbon cages. J Am Chem Soc 110(4):1113–1127. https://doi.org/10.1021/ja00212a020

    Article  CAS  Google Scholar 

  15. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358. https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  16. Krätschmer W, Fostiropoulos K, Huffman DR (1990) The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem Phys Lett 170(2):167–170. https://doi.org/10.1016/0009-2614(90)87109-5

    Article  Google Scholar 

  17. Curl RF, Smalley RE (1991) Fullerenes. Sci Am 265(4):54–63. http://www.jstor.org/stable/24938758

    Article  CAS  Google Scholar 

  18. Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352(6331):139–141. https://doi.org/10.1038/352139a0

    Article  CAS  PubMed  Google Scholar 

  19. Heath JR, O’Brien SC, Zhang Q et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780. https://doi.org/10.1021/ja00311a102

    Article  CAS  Google Scholar 

  20. Takata M, Umeda B, Nishibori E et al (1995) Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377(6544):46–49. https://doi.org/10.1038/377046a0

    Article  CAS  Google Scholar 

  21. Lu X, Nikawa H, Feng L et al (2009) Location of the yttrium atom in Y@C82 and its influence on the reactivity of cage carbons. J Am Chem Soc 131(34):12066–12067. https://doi.org/10.1021/ja905001w

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JY, Bowles FL, Bearden DW et al (2013) A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nat Chem 5(10):880–885. https://doi.org/10.1038/nchem.1748

    Article  CAS  PubMed  Google Scholar 

  23. Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44(44):7230–7233. https://doi.org/10.1002/anie.200501791

    Article  CAS  Google Scholar 

  24. Sun M-L, Slanina Z, Lee S-L, Uhlík F (1995) AM1 computations on seven isolated-pentagon-rule isomers of C80. Chem Phys Lett 246(1):66–72. https://doi.org/10.1016/0009-2614(95)01084-M

    Article  CAS  Google Scholar 

  25. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329(6139):529–531. https://doi.org/10.1038/329529a0

    Article  CAS  Google Scholar 

  26. Wang C-R, Kai T, Tomiyama T et al (2000) C66 fullerene encaging a scandium dimer. Nature 408(6811):426–427. https://doi.org/10.1038/35044195

    Article  CAS  PubMed  Google Scholar 

  27. Stevenson S, Fowler PW, Heine T et al (2000) A stable non-classical metallofullerene family. Nature 408(6811):427–428. https://doi.org/10.1038/35044199

    Article  CAS  PubMed  Google Scholar 

  28. Yamada M, Kurihara H, Suzuki M et al (2014) Sc2@C66 revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear triquinanes. J Am Chem Soc 136(21):7611–7614. https://doi.org/10.1021/ja5035649

    Article  CAS  PubMed  Google Scholar 

  29. Dinadayalane TC, Leszczynski J. (2017) Fundamental structural, electronic, and chemical properties of carbon nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. In: Handbook of computational chemistry, pp 1175–1258. https://doi.org/10.1007/978-94-007-0711-5_22

  30. Maruyama S, Yamaguchi Y (1998) A molecular dynamics demonstration of annealing to a perfect C60 structure. Chem Phys Lett 286(3):343–349. https://doi.org/10.1016/S0009-2614(98)00103-1

    Article  CAS  Google Scholar 

  31. Smalley RE (1992) Self-assembly of the fullerenes. Acc Chem Res 25(3):98–105. https://doi.org/10.1021/ar00015a001

    Article  CAS  Google Scholar 

  32. Hammond GS, Kuck VJ (1992) Fullerenes: synthesis, properties, and chemistry of large carbon clusters. Conference: 201. American Chemical Society (ACS) national meeting, Atlanta, GA (United States), 14–19 Apr 1991; Related Information: ACS symposium series 481. United States: Washington, DC (United States); American Chemical Society; 1992: Medium: X; Size: 209 p

    Google Scholar 

  33. von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97(31):8182–8192. https://doi.org/10.1021/j100133a011

    Article  Google Scholar 

  34. Lagow RJ, Kampa JJ, Wei H-C et al (1995) Synthesis of linear acetylenic carbon: the “sp” carbon allotrope. Science 267(5196):362–367. https://doi.org/10.1126/science.267.5196.362

    Article  CAS  PubMed  Google Scholar 

  35. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329(5996):1180–1182. https://doi.org/10.1126/science.1192035

    Article  CAS  PubMed  Google Scholar 

  36. Chuvilin A, Kaiser U, Bichoutskaia E, Besley NA, Khlobystov AN (2010) Direct transformation of graphene to fullerene. Nat Chem 2(6):450–453. https://doi.org/10.1038/nchem.644

    Article  CAS  PubMed  Google Scholar 

  37. Irle S, Zheng G, Wang Z, Morokuma K (2006) The C60 formation puzzle “solved”: QM/MD simulations reveal the shrinking hot Giant road of the dynamic fullerene self-assembly mechanism. J Phys Chem B 110(30):14531–14545. https://doi.org/10.1021/jp061173z

    Article  CAS  PubMed  Google Scholar 

  38. Slanina Z, Zahradnik R (1977) Calculations of absolute values of equilibrium and rate constants. 9. MINDO/2 study of equilibrium carbon vapor. J Phys Chem 81(24):2252–2257. https://doi.org/10.1021/j100539a011

    Article  CAS  Google Scholar 

  39. Pitzer KS, Clementi E (1959) Large molecules in carbon vapor. J Am Chem Soc 81(17):4477–4485. https://doi.org/10.1021/ja01526a010

    Article  CAS  Google Scholar 

  40. von Helden G, Gotts NG, Bowers MT (1993) Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363(6424):60–63. https://doi.org/10.1038/363060a0

    Article  Google Scholar 

  41. von Helden G, Gotts NG, Bowers MT (1993) Annealing of carbon cluster cations: rings to rings and rings to fullerenes. J Am Chem Soc 115(10):4363–4364. https://doi.org/10.1021/ja00063a065

    Article  Google Scholar 

  42. Shvartsburg AA, Hudgins RR, Dugourd P, Gutierrez R, Frauenheim T, Jarrold MF (2000) Observation of “stick” and “handle” intermediates along the fullerene road. Phys Rev Lett 84(11):2421–2424. https://doi.org/10.1103/PhysRevLett.84.2421

    Article  CAS  PubMed  Google Scholar 

  43. Dunk PW, Kaiser NK, Hendrickson CL et al (2012) Closed network growth of fullerenes. Nat Commun 3(1):855. https://doi.org/10.1038/ncomms1853

    Article  CAS  PubMed  Google Scholar 

  44. Dunk PW, Kaiser NK, Mulet-Gas M et al (2012) The smallest stable fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc 134(22):9380–9389. https://doi.org/10.1021/ja302398h

    Article  CAS  PubMed  Google Scholar 

  45. Dunk PW, Adjizian J-J, Kaiser NK et al (2013) Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust. Proc Natl Acad Sci U S A 110(45):18081. https://doi.org/10.1073/pnas.1315928110

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dunk PW, Rodríguez-Fortea A, Kaiser NK, Shinohara H, Poblet JM, Kroto HW (2013) Formation of heterofullerenes by direct exposure of C60 to boron vapor. Angew Chem Int Ed 52(1):315–319. https://doi.org/10.1002/anie.201208244

    Article  CAS  Google Scholar 

  47. Dunk PW, Mulet-Gas M, Nakanishi Y et al (2014) Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nat Commun 5:8. https://doi.org/10.1038/ncomms6844

    Article  CAS  Google Scholar 

  48. Dunk PW, Niwa H, Shinohara H, Marshall AG, Kroto HW (2015) Large fullerenes in mass spectra. Mol Phys 113(15–16):2359–2361. https://doi.org/10.1080/00268976.2015.1046963

    Article  CAS  Google Scholar 

  49. Mulet-Gas M, Abella L, Dunk PW, Rodríguez-Fortea A, Kroto HW, Poblet JM (2015) Small endohedral metallofullerenes: exploration of the structure and growth mechanism in the Ti@C2n (2n = 26–50) family. Chem Sci 6(1):675–686. https://doi.org/10.1039/C4SC02268H

    Article  CAS  PubMed  Google Scholar 

  50. Mulet-Gas M, Abella L, Cerón MR et al (2017) Transformation of doped graphite into cluster-encapsulated fullerene cages. Nat Commun 8(1):1222. https://doi.org/10.1038/s41467-017-01295-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abergel A, Arab H, Compiègne M et al (2010) Evolution of interstellar dust with Herschel. First results in the photodissociation regions of NGC 7023. A&A 518:L96. https://doi.org/10.1051/0004-6361/201014643

    Article  Google Scholar 

  52. Martínez L, Santoro G, Merino P et al (2020) Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat Astron 4(1):97–105. https://doi.org/10.1038/s41550-019-0899-4

    Article  PubMed  Google Scholar 

  53. Mercado BQ, Olmstead MM, Beavers CM et al (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc43-O)3@Ih-C80. Chem Commun 46(2):279–281. https://doi.org/10.1039/B918731F

    Article  CAS  Google Scholar 

  54. Shinohara H, Sato H, Saito Y, Takayama M, Izuoka A, Sugawara T (1991) Formation and extraction of very large all-carbon fullerenes. J Phys Chem 95(22):8449–8451. https://doi.org/10.1021/j100175a010

    Article  CAS  Google Scholar 

  55. Koenig RM, Tian H-R, Seeler TL et al (2020) Fullertubes: cylindrical carbon with half-fullerene end-caps and tubular graphene belts, their chemical enrichment, crystallography of pristine C90-D5h(1) and C100-D5d(1) fullertubes, and isolation of C108, C120, C132, and C156 cages of unknown structures. J Am Chem Soc 142(36):15614–15623. https://doi.org/10.1021/jacs.0c08529

    Article  CAS  PubMed  Google Scholar 

  56. Maruyama S, Anderson LR, Smalley RE (1990) Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev Sci Instrum 61(12):3686–3693. https://doi.org/10.1063/1.1141536

    Article  CAS  Google Scholar 

  57. Maruyama S, Lee MY, Haufler RE, Chai Y, Smalley RE (1991) Thermionic emission from giant fullerenes. Z Phys D - Atoms, Molecules and Clusters 19:409–412. https://doi.org/10.1007/bf01448340

    Article  CAS  Google Scholar 

  58. Curl RF, Lee MK, Scuseria GE (2008) C60 buckminsterfullerene high yields Unraveled. J Phys Chem A 112(46):11951–11955. https://doi.org/10.1021/jp806951v

    Article  CAS  PubMed  Google Scholar 

  59. Saha B, Irle S, Morokuma K (2011) Hot Giant fullerenes eject and capture C2 molecules: QM/MD simulations with constant density. J Phys Chem C 115(46):22707–22716. https://doi.org/10.1021/jp203614e

    Article  CAS  Google Scholar 

  60. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359(6397):707–709. https://doi.org/10.1038/359707a0

    Article  CAS  PubMed  Google Scholar 

  61. Berné O, Tielens AGGM (2012) Formation of buckminsterfullerene (C60) in interstellar space. Proc Natl Acad Sci U S A 109(2):401–406. https://doi.org/10.1073/pnas.1114207108

    Article  PubMed  Google Scholar 

  62. Micelotta ER, Jones AP, Cami J, Peeters E, Bernard-Salas J, Fanchini G (2012) The formation of cosmic fullerenese from arophatic clusters. Astrophys J 761(1):35. https://doi.org/10.1088/0004-637x/761/1/35

    Article  Google Scholar 

  63. Zhen J, Castellanos P, Paardekooper DM, Linnartz H, Tielens AGGM (2012) Laboratory formation of fullerenes from PAHs: top-down interstellar chemistry. Astrophys J 797(2):L30. https://doi.org/10.1088/2041-8205/797/2/l30

    Article  Google Scholar 

  64. Berné O, Montillaud J, Joblin C (2015) Top-down formation of fullerenes in the interstellar medium. A&A 577:A133. https://doi.org/10.1051/0004-6361/201425338

    Article  Google Scholar 

  65. Cherchneff I, Le Teuff YH, Williams PM, Tielens AGGM (2000) Dust formation in carbon-rich Wolf-Rayet stars. I. Chemistry of small carbon clusters and silicon species. Astron Astrophys 357:572–580

    CAS  Google Scholar 

  66. Zhang Y, Ghiassi KB, Deng Q et al (2015) Synthesis and structure of LaSc2N@Cs(hept)-C80 with one heptagon and thirteen pentagons. Angew Chem Int Ed 54(2):495–499. https://doi.org/10.1002/anie.201409094

    Article  CAS  Google Scholar 

  67. Chen C-H, Abella L, Cerón MR et al (2016) Zigzag Sc2C2 carbide cluster inside a [88]fullerene cage with one heptagon, Sc2C2@Cs(hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037. https://doi.org/10.1021/jacs.6b07912

    Article  CAS  PubMed  Google Scholar 

  68. Chen C-H, Ghiassi KB, Cerón MR et al (2015) Beyond the butterfly: Sc2C2@C2v(9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137(32):10116–10119. https://doi.org/10.1021/jacs.5b06425

    Article  CAS  PubMed  Google Scholar 

  69. Cai W, Li F-F, Bao L, Xie Y, Lu X (2016) Isolation and crystallographic characterization of La2C2@Cs(574)-C102 and La2C2@C2(816)-C104: evidence for the top-down formation mechanism of fullerenes. J Am Chem Soc 138(20):6670–6675. https://doi.org/10.1021/jacs.6b03934

    Article  CAS  PubMed  Google Scholar 

  70. Abella L, Wang Y, Rodríguez-Fortea A, Chen N, Poblet JM (2017) Current status of oxide clusterfullerenes. Inorg Chim Acta 468:91–104. https://doi.org/10.1016/j.ica.2017.05.040

    Article  CAS  Google Scholar 

  71. Hao Y, Tang Q, Li X et al (2016) Isomeric Sc2O@C78 related by a single-step stone–wales transformation: key links in an unprecedented fullerene formation pathway. Inorg Chem 55(21):11354–11361. https://doi.org/10.1021/acs.inorgchem.6b01894

    Article  CAS  PubMed  Google Scholar 

  72. Bao L, Yu P, Pan C, Shen W, Lu X (2019) Crystallographic identification of Eu@C2n (2n = 88, 86 and 84): completing a transformation map for existing metallofullerenes. Chem Sci 10(7):2153–2158. https://doi.org/10.1039/C8SC04906H

    Article  CAS  PubMed  Google Scholar 

  73. Cai W, Alvarado J, Metta-Magaña A, Chen N, Echegoyen L (2020) Interconversions between uranium mono-metallofullerenes: mechanistic implications and role of asymmetric cages. J Am Chem Soc 142(30):13112–13119. https://doi.org/10.1021/jacs.0c04888

    Article  CAS  PubMed  Google Scholar 

  74. Qian H-J, Wang Y, Morokuma K (2017) Quantum mechanical simulation reveals the role of cold helium atoms and the coexistence of bottom-up and top-down formation mechanisms of buckminsterfullerene from carbon vapor. Carbon 114:635–641. https://doi.org/10.1016/j.carbon.2016.12.062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyuan Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Crichton, R.A., Zhang, J. (2022). Formation Mechanism of Fullerenes/Metallofullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics