Skip to main content

Structural Characteristics of Fullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 125 Accesses

Abstract

Fullerenes, exemplified by the famous C60, all feature alluring closed cage-shaped structures composed of pentagons and hexagons. They are pure carbon clusters and also the molecular form of element carbon. Getting familiar with the structural characteristics of pristine fullerenes is essential for further understanding their properties. In this chapter, various important aspects regarding the fullerene structures are presented, including the fullerene polyhedra, fullerene duals, fullerene graphs, spiral algorithm, naming schemes, steric strain, cage stability, point-group symmetry, cage isomerization and cage interconversion, etc. Important rules such as the isolated pentagon rule and 2(N + 1)2 rule of spherical aromaticity are introduced. Then the detailed structural characteristics of a series of representative members in the big fullerene family are selectively shown. The involved cage size ranges from the smallest C20 to the supergiant C540. Some studies from both the experimental and theoretical sides are reviewed. Besides, different fullerene derivatives (endohedral and exohedral forms, heterofullerenes) and nonclassical fullerenes containing square or heptagon are also briefly mentioned. The illustrated various cage structures will present the readers a beautiful fullerene world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, Oxford, UK

    Google Scholar 

  3. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  4. Campbell EEB, Fowler PW, Mitchell D, Zerbetto F (1996) Increasing cost of pentagon adjacency for larger fullerenes. Chem Phys Lett 250:544–548

    Article  CAS  Google Scholar 

  5. Haddon RC (1988) Pi.-Electrons in three dimensional. Acc Chem Res 21:243–249

    Article  CAS  Google Scholar 

  6. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  7. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in Ih symmetrical fullerenes: the 2(N+1)2 rule. Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  8. von Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Hommes NJRE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  9. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  PubMed  Google Scholar 

  10. Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63

    Article  CAS  PubMed  Google Scholar 

  11. Martin JML (1996) C28: the smallest stable fullerene? Chem Phys Lett 255:1–6

    Article  CAS  Google Scholar 

  12. Piskoti C, Yarger J, Zettl A (1998) C36, a new carbon solid. Nature 393:771–774

    Article  CAS  Google Scholar 

  13. Sun G, Nicklaus MC, Xie RH (2005) Structure, stability, and NMR properties of lower fullerenes C38–C50 and azafullerene C44N6. J Phys Chem A 109:4617–4622

    Article  CAS  PubMed  Google Scholar 

  14. Shao N, Gao Y, Zeng XC (2007) Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. J Phys Chem C 111:17671–17677

    Article  CAS  Google Scholar 

  15. Xie SY, Gao F, Lu X, Huang RB, Wang CR, Zhang X, Liu ML, Deng SL, Zheng LS (2004) Capturing the labile fullerene [50] as C50Cl10. Science 304:699

    Article  CAS  PubMed  Google Scholar 

  16. Han X, Zhou SJ, Tan YZ, Wu X, Gao F, Liao ZJ, Huang RB, Feng YQ, Lu X, Xie S, Zheng LS (2008) Crystal structures of Saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of double- and triple-pentagon-fused chlorofullerenes. Angew Chem Int Ed 47:5340–5343

    Article  CAS  Google Scholar 

  17. Tan YZ, Xie SY, Huang RB, Zheng LS (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460

    Article  CAS  PubMed  Google Scholar 

  18. Yamada M, Akasaka T, Nagase S (2018) Salvaging reactive fullerenes from soot by exohedral derivatization. Angew Chem Int Ed 57:13394–13405

    Article  CAS  Google Scholar 

  19. Guan R, Chen M, Jin F, Yang S (2020) Strain release of fused pentagons in fullerene cages by chemical functionalization. Angew Chem Int Ed 59:1048–1073

    Article  CAS  Google Scholar 

  20. Tan YZ, Li J, Zhu F, Han X, Jiang WS, Huang RB, Zheng Z, Qian ZZ, Chen RT, Liao ZJ, Xie SY, Lu X, Zheng LS (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273

    Article  CAS  PubMed  Google Scholar 

  21. Yang S, Ioffe IN, Troyanov SI (2019) Chlorination-promoted skeletal transformations of fullerenes. Acc Chem Res 52:1783–1792

    Article  CAS  PubMed  Google Scholar 

  22. Boltalina OV, Popov AA, Kuvychko IV, Shustova NB, Strauss SH (2015) Perfluoroalkylfullerenes. Chem Rev 115:1051–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian W, Chuang SC, Amador RB, Jarrosson T, Sander M, Pieniazek S, Khan SI, Rubin Y (2003) Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J Am Chem Soc 125:2066–2067

    Article  CAS  PubMed  Google Scholar 

  24. Wang CR, Shi ZQ, Wan LJ, Lu X, Dunsch L, Shu CY, Tang YL, Shinohara H (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610

    Article  CAS  PubMed  Google Scholar 

  25. Shan GJ, Tan YZ, Zhou T, Zou XM, Li BW, Xue C, Chu CX, Xie SY, Huang RB, Zhen LS (2012) C64Cl8: a strain-relief pattern to stabilize fullerenes containing triple directly fused pentagons. Chem Asian J 7:2036–2039

    Article  CAS  PubMed  Google Scholar 

  26. Gao CL, Li X, Tan YZ, Wu XZ, Zhang Q, Xie SY, Huang RB (2014) Synthesis of long-sought C66 with exohedral stabilization. Angew Chem Int Ed 53:7853–7855

    Article  CAS  Google Scholar 

  27. Tian HR, Chen MM, Wang K, Chen ZC, Fu CY, Zhang Q, Li SH, Deng SL, Yao YR, Xie SY, Huang RB, Zheng LS (2019) An unconventional hydrofullerene C66H4 with symmetric heptagons retrieved in low-pressure combustion. J Am Chem Soc 141:6651–6657

    Article  CAS  PubMed  Google Scholar 

  28. Amsharov KY, Ziegler K, Mueller A, Jansen M (2012) Capturing the antiaromatic (#6094)C68 carbon cage in the radio-frequency furnace. Chem Eur J 18:9289–9293

    Article  CAS  PubMed  Google Scholar 

  29. Tan YZ, Li J, Du MY, Lin SC, Xie SY, Lu X, Huang RB, Zheng LS (2013) Exohedrally stabilized C70 isomer with adjacent pentagons characterized by crystallography. Chem Sci 4:2967–2970

    Article  CAS  Google Scholar 

  30. Zhong YY, Chen ZC, Du P, Cui CH, Tian HR, Shi XM, Deng SL, Gao F, Zhang Q, Gao CL, Zhang X, Xie SY, Huang RB, Zheng LS (2019) Double negatively curved C70 growth through a heptagon-involving pathway. Angew Chem Int Ed 58:14095–14099

    Article  CAS  Google Scholar 

  31. Slanina Z, Ishimura K, Kobayashi K, Nagase S (2004) C72 isomers: the IPR-satisfying cage is disfavored by both energy and entropy. Chem Phys Lett 384:114–118

    Article  CAS  Google Scholar 

  32. Tan YZ, Zhou T, Bao J, Shan GJ, Xie SY, Huang RB, Zheng LS (2010) C72Cl4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104

    Article  CAS  PubMed  Google Scholar 

  33. Gao CL, Abella L, Tan YZ, Wu XZ, Rodriguez-Fortea A, Poblet JM, Xie SY, Huang RB, Zheng LS (2016) Capturing the fused-pentagon C74 by stepwise chlorination. Inorg Chem 55:6861–6865

    Article  CAS  PubMed  Google Scholar 

  34. Simeonov KS, Amsharov KY, Jansen M (2007) Connectivity of the chiral D2-symmetric isomer of C76 through a crystal-structure determination of C76Cl18·TiCl4. Angew Chem Int Ed 46:8419–8421

    Article  CAS  Google Scholar 

  35. Ioffe IN, Goryunkov AA, Tamm NB, Sidorov LN, Kemnitz E, Troyanov SI (2009) Fusing pentagons in a fullerene cage by chlorination: IPR D2-C76 rearranges into non-IPR C76Cl24. Angew Chem Int Ed 48:5904–5907

    Article  CAS  Google Scholar 

  36. Shao N, Gao Y, Yoo S, An W, Zeng XC (2006) Search for lowest-energy fullerenes: C98 to C110. J Phys Chem A 110:7672–7676

    Article  CAS  PubMed  Google Scholar 

  37. Balch AL, Ginwalla AS, Lee JW, Noll BC, Olmstead MM (2002) Partial separation and structural characterization of C84 isomers by crystallization of (.eta.2-C84)Ir(CO)Cl(P(C6H5)3)2. J Am Chem Soc 116:2227–2228

    Article  Google Scholar 

  38. Yang S, Wei T, Troyanov SI (2014) Chlorination of two isomers of C86 fullerene: molecular structures of C86(16)Cl16, C86(17)Cl18, C86(17)Cl20, and C86(17)Cl22. Chem Eur J 20:14198–14200

    Article  CAS  PubMed  Google Scholar 

  39. Jin F, Yang S, Kemnitz E, Troyanov SI (2017) Skeletal transformation of a classical fullerene C88 into a nonclassical fullerene chloride C84Cl30 bearing quaternary sequentially fused pentagons. J Am Chem Soc 139:4651–4654

    Article  CAS  PubMed  Google Scholar 

  40. Yang H, Beavers CM, Wang Z, Jiang A, Liu Z, Jin H, Mercado BQ, Olmstead MM, Balch AL (2010) Isolation of a small carbon nanotube: the surprising appearance of D5h(1)-C90. Angew Chem Int Ed 49:886–890

    Article  CAS  Google Scholar 

  41. Ioffe IN, Mazaleva ON, Sidorov LN, Yang S, Wei T, Kemnitz E, Troyanov SI (2013) Cage shrinkage of fullerene via a C2 loss: from IPR C90(28)Cl24 to nonclassical, heptagon-containing C88Cl22/24. Inorg Chem 52:13821–13823

    Article  CAS  PubMed  Google Scholar 

  42. Troyanov SI, Tamm NB (2009) Cage connectivities of C88(33) and C92(82) fullerenes captured as trifluoromethyl derivatives, C88(CF3)18 and C92(CF3)16. Chem Commun 40:6035

    Article  CAS  Google Scholar 

  43. Yang H, Jin H, Che Y, Hong B, Liu Z, Gharamaleki JA, Olmstead MM, Balch AL (2012) Isolation of four isomers of C96 and crystallographic characterization of nanotubular D3d(3)-C96 and the somewhat flat-sided sphere C2(181)-C96. Chem Eur J 18:2792–2796

    Article  CAS  PubMed  Google Scholar 

  44. Tamm NB, Guan R, Yang S, Troyanov SI (2020) New isolated-pentagon-rule isomers of fullerene C96 captured as chloro derivatives. Eur J Inorg Chem 2020:2092–2095

    Article  CAS  Google Scholar 

  45. Tamm NB, Guan R, Yang S, Sidorov LN, Troyanov SI (2020) Three isolated-pentagon-rule isomers of C96 fullerene isolated as trifluoromethyl derivatives. Inorg Chem 59:17866–17869

    Article  CAS  PubMed  Google Scholar 

  46. Tamm NB, Guan R, Yang S, Troyanov SI (2020) Trifluoromethyl derivatives of elusive fullerene C98. Chem Eur J 26:616–619

    Article  CAS  PubMed  Google Scholar 

  47. Tamm NB, Troyanov SI (2021) Two isolated-pentagon-rule isomers C98(110) and C98(111) isolated as trifluoromethylfullerenes C98(CF3)22. Inorg Chem 60:18625–18628

    Article  CAS  PubMed  Google Scholar 

  48. Koenig RM, Tian HR, Seeler TL, Tepper KR, Franklin HM, Chen ZC, Xie SY, Stevenson S (2020) Fullertubes: cylindrical carbon with half-fullerene end-caps and tubular graphene belts, their chemical enrichment, crystallography of pristine C90-D5h(1) and C100-D5d(1) fullertubes, and isolation of C108, C120, C132, and C156 cages of unknown structures. J Am Chem Soc 142:15614–15623

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Yang S, Kemnitz E, Troyanov SI (2016) New giant fullerenes identified as chloro derivatives: isolated-pentagon-rule C108(1771)Cl12 and C106(1155)Cl24 as well as nonclassical C104Cl24. Inorg Chem 55:5741–5743

    Article  CAS  PubMed  Google Scholar 

  50. Wang S, Chang Q, Zhang G, Li F, Wang X, Yang S, Troyanov SI (2020) Structural studies of giant empty and endohedral fullerenes. Front Chem 8:607712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jin, P., Gu, X. (2022). Structural Characteristics of Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics