Skip to main content

Hysteresis Behavior for Wave Energy Conversion Device Under Alternative Axial Flow Conditions

  • Conference paper
  • First Online:
Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018)

Abstract

Wells turbine is an axial flow air turbine extensively used in the oscillating water column (OWC) of ocean energy harvesting device. The turbine has low aerodynamic efficiency at higher flow rate and poor starting characteristics. In this paper, the characteristics of the hysteresis behavior of a Wells turbine for a wave energy conversion device under alternative axial flow conditions are reported. The numerical work is carried out by solving the three-dimensional unsteady Reynolds Average Navier–Stokes equations (URANS) with two-equation eddy viscosity model. It is noticed that the unsteady numerical results are associated with two hysteresis loop. In the clockwise hysteresis loop, larger flow separation can be noticed on the blade suction side due to stronger vortex while flow separation decreases due to weaker vortex during counterclockwise hysteresis loop. Also, the effect of the blade sweep and blade profile thickness on the hysteresis behavior of the wave energy conversion device are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brito-Melo A, Gato LMC, Sarmento AJNA (2002) Analysis of Wells turbine design parameters by numerical simulation of the OWC performance. Ocean Eng 29:1463–1477. https://doi.org/10.1016/S0029-8018(01)00099-3

    Article  Google Scholar 

  2. Raghunathan S (1995) The Wells air turbine for wave energy conversion. Prog Aerosp Sci 31:335–386. https://doi.org/10.1016/0376-0421(95)00001-F

    Article  Google Scholar 

  3. Torresi M, Camporeale SM, Strippoli PD, Pascazio G (2008) Accurate numerical simulation of a high solidity Wells turbine. Renew Energy 33:735–747. https://doi.org/10.1016/j.renene.2007.04.006

    Article  Google Scholar 

  4. Halder P, Samad A, Kim J-H, Choi Y-S (2015) High performance ocean energy harvesting turbine design–a new casing treatment scheme. Energy 86:219–231. https://doi.org/10.1016/j.energy.2015.03.131

    Article  Google Scholar 

  5. Taha Z, Sugiyono Sawada T (2010) A comparison of computational and experimental results of Wells turbine performance for wave energy conversion. Appl Ocean Res 32:83–90. https://doi.org/10.1016/j.apor.2010.04.002

    Article  Google Scholar 

  6. Halder P, Samad A, Thévenin D (2017) Improved design of a Wells turbine for higher operating range. Renew Energy 106:122–134. https://doi.org/10.1016/j.renene.2017.01.012

    Article  Google Scholar 

  7. Halder P, Samad A (2016) Torque and efficiency maximization for a wave energy harvesting turbine: an approach to modify multiple design variables. Int J Energy Res 1–15. https://doi.org/10.1002/er.3694

    Article  Google Scholar 

  8. Halder P, Rhee SH, Samad A (2016) Numerical optimization of Wells turbine for wave energy extraction. Int J Naval Architect Ocean Eng. https://doi.org/10.1016/j.ijnaoe.2016.06.008

    Article  Google Scholar 

  9. Kim T, Lee, Yeon- Won, Ill-Kyoo Park, Toshiaki Setoguchi C-SK (2002) Numerical analysis for unsteady flow characteristics of the Wells turbine. In: Proceedings of the twelfth international offshore and polar engineering conference. Kitakyushu, Japan, May 26–31, 2002, pp 694–699

    Google Scholar 

  10. Kim T-H, Takao M, Setoguchi T et al (2001) Performance comparison of turbines for wave power conversion. Int J Therm Sci 40:681–689. https://doi.org/10.1016/S1290-0729(01)01257-1

    Article  Google Scholar 

  11. Inoue M, Kaneko K, Setoguchi T, Shimamoto K (1986) Studies on Wells turbine for wave power generator. Japan Soc Mech Eng 29:1177–1182

    Google Scholar 

  12. Das TK, Halder P, Samad A (2017) Optimal design of air turbines for oscillating water column wave energy systems: a review. Int J Ocean Climate Syst 8:37–49. https://doi.org/10.1177/1759313117693639

    Article  Google Scholar 

  13. Thakker A, Abdulhadi R (2007) Effect of blade profile on the performance of Wells turbine under unidirectional sinusoidal and real sea flow conditions. Int J Rotat Mach 2007:1–8. https://doi.org/10.1155/2007/51598

    Article  Google Scholar 

  14. Thakker A, Abdulhadi R (2008) The performance of Wells turbine under bi-directional airflow. Renew Energy 33:2467–2474. https://doi.org/10.1016/j.renene.2008.02.013

    Article  Google Scholar 

  15. Kinoue Y, Setoguchi T, Kim T-H et al (2003) Mechanism of hysteretic characteristics of Wells turbine. Trans ASME 125:302–307. https://doi.org/10.1299/kikaib.69.610

    Article  Google Scholar 

  16. Kinoue Y, Setoguchi T, Kim TH et al (2005) Hysteretic characteristics of the Wells turbine in a deep stall condition. Proc Institution Mech Eng, Part M J Eng Maritime Environ 218:167–173. https://doi.org/10.1243/1475090041737967

    Article  Google Scholar 

  17. Curran R, Gato LMC (1997) The energy conversion performance of several types of Wells turbine designs. Proc Institution Mech Eng, Part M J Eng Maritime Environ 211:133–145. https://doi.org/10.1243/0957650971537051

    Article  Google Scholar 

  18. Kinoue Y, Setoguchi T, Kim TH et al (2004) Hysteretic characteristics of the Wells turbine in a deep stall condition. Proc Institution Mech Eng, Part M J Eng Maritime Environ 218:167–173. https://doi.org/10.1243/1475090041737967

    Article  Google Scholar 

  19. Kinoue Y, Mamun M, Setoguchi T, Kaneko K (2004) Hysteretic characteristics of monoplane and biplane Wells turbine for wave power conversion. Int J Sustain Energ 26:51–60. https://doi.org/10.1016/j.enconman.2003.08.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paresh Halder , Tapas K. Das , Abdus Samad or Mohaned H. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halder, P., Das, T.K., Samad, A., Mohamed, M.H. (2019). Hysteresis Behavior for Wave Energy Conversion Device Under Alternative Axial Flow Conditions. In: Murali, K., Sriram, V., Samad, A., Saha, N. (eds) Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). Lecture Notes in Civil Engineering , vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-13-3134-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3134-3_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3133-6

  • Online ISBN: 978-981-13-3134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics