Skip to main content

Experimental Investigation on Effect of Submerged Solid Baffle in a Barge Carrying Liquid Sloshing Tank

  • Conference paper
  • First Online:
Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 22))

Abstract

An experimental programme is conducted to investigate, barge responses, sloshing dynamics and sloshing pressure in a partially liquid-filled baffled tank which is equipped in a floating barge. The barge was subjected to regular wave excitations with wave height of 0.1 m and frequencies ranging from 0.45 to 1.54 Hz under beam sea condition. An aspect ratio (hs/l, liquid depth, hs to length of tank l) of 0.488 corresponds to 75% fill level is considered. In addition, a solid baffle wall at l/2 (height of solid baffle wall as h/2, h = tank height) is considered which is a typical arrangement in LNG sloshing tank. The effectiveness of solid baffle is investigated in comparison with unbaffled conditions. The barge responses at liquid-filled condition and equivalent dry weight conditions are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakayama T, Washizu K (1980) Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation. Int J Numer Meth Eng 15(8):1207–1220. https://doi.org/10.1002/nme.1620150808

    Article  MathSciNet  MATH  Google Scholar 

  2. Ockendon H, Ockendon JR, Johnson AD (1986) Resonant sloshing in shallow water. J Fluid Mech 167(1):465. https://doi.org/10.1017/S0022112086002926

    Article  MathSciNet  MATH  Google Scholar 

  3. Ockendon H, Ockendon JR, Peake MR, Chester W (1993) Geometrical effects in resonant gas oscillations. J Fluid Mech 257:201. https://doi.org/10.1017/S0022112093003040

    Article  MathSciNet  MATH  Google Scholar 

  4. Ockendon H, Ockendon JR, Waterhouse DD (1996) Multi-mode resonances in fluids. J Fluid Mech 315:317. https://doi.org/10.1017/S0022112096002443

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu D, Lin P (2009) Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng 36:202–212. https://doi.org/10.1016/j.oceaneng.2008.10.004

    Article  Google Scholar 

  6. Faltinsen OM, Rognebakke OF, Lukovsky IA, Timokha AN (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234. https://doi.org/10.1017/S0022112099007569

    Article  MathSciNet  MATH  Google Scholar 

  7. Faltinsen OM, Timokha AN (2001) An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J Fluid Mech 432:167–200

    Article  Google Scholar 

  8. Faltinsen OM, Timokha AN (2002) Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J Fluid Mech 470:319–357. https://doi.org/10.1017/S0022112002002112

    Article  MathSciNet  MATH  Google Scholar 

  9. Frandsen JB (2004) Sloshing motions in excited tanks. J Comput Phys 196:53–87. https://doi.org/10.1016/j.jcp.2003.10.031

    Article  MATH  Google Scholar 

  10. Kim MS, Park JS, Lee W II (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: Application to the cavity filling and sloshing problems. Int J Numer Meth Fluids 812:791–812

    Article  Google Scholar 

  11. Chen BF, Chiang HW (2000) Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank. Ocean Eng 27:953–977. https://doi.org/10.1016/S0029-8018(99)00036-0

    Article  Google Scholar 

  12. Francescutto A, Contento G (1994) An experimental study of the coupling between roll motion and sloshing in a compartment. In: Proceedings of the fourth international offshore and polar engineering conference, Osaka, Japan, 10–15 April 1994

    Google Scholar 

  13. Lee SJ, Kim MH, Lee DH, Kim JW, Kim YH (2007) The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Eng 34:10–20. https://doi.org/10.1016/j.oceaneng.2006.02.007

    Article  Google Scholar 

  14. Nasar T, Sannasiraj SA, Sundar V (2010) Motion responses of barge carrying liquid tank. Ocean Eng 37:935–946. https://doi.org/10.1016/j.oceaneng.2010.03.006

    Article  MATH  Google Scholar 

  15. Nasar T, Sannasiraj SA, Sundar V (2009) Wave-induced sloshing pressure in a liquid tank under irregular waves. Proc Inst Mech Eng, Part M: J Eng Marit Environ 223(2):145–161. https://doi.org/10.1243/14750902JEME135

    Article  Google Scholar 

  16. Modi VJ, Akinturk A (2002) An efficient liquid sloshing damper for control of wind-induced instabilities. J Wind Eng Ind Aerodyn 90:1907–1918

    Article  Google Scholar 

  17. Warnitchai P, Pinkaew T (1998) Modelling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng Struct 20(97):593–600. https://doi.org/10.1016/S0141-0296(97)00068-0

    Article  Google Scholar 

  18. Tait MJ, El Damatty AA, Isyumov N, Siddique MR (2005) Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. J Fluids Struct 20:1007–1023. https://doi.org/10.1016/j.jfluidstructs.2005.04.004

    Article  Google Scholar 

  19. Crowley S, Porter R (2012) The effect of slatted screens on waves. J Eng Math 76:33–57. https://doi.org/10.1007/s10665-011-9529-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Molin B, Remy F (2015) Inertia effects in TLD sloshing with perforated screens. J Fluids Struct 59:165–177. https://doi.org/10.1016/j.jfluidstructs.2015.09.00

    Article  Google Scholar 

  21. Armenio V, La Rocca M (1996) On the analysis of sloshing of water in rectangular containers: numerical study and experimental validation. Ocean Eng 23(8):705–739. https://doi.org/10.1016/0029-8018(96)84409-X

    Article  Google Scholar 

  22. Kim Y (2001) Numerical simulation of sloshing flows with impact load. Appl Ocean Res 23(1):53–62. https://doi.org/10.1016/S0141-1187(00)00021-3

    Article  Google Scholar 

  23. Panigrahy PK, Saha UK, Maity D (2009) Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng 36(3–4):213–222. https://doi.org/10.1016/j.oceaneng.2008.11.002

    Article  Google Scholar 

  24. Xue M, Zheng J, Lin P, Yuan X (2017) Experimental study on vertical baffles of different configurations in suppressing sloshing pressure. Ocean Eng 136:178–189. https://doi.org/10.1016/j.oceaneng.2017.03.031

    Article  Google Scholar 

  25. Akyildiz H (2012) A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. J Sound Vib 331(1):41–52. https://doi.org/10.1016/j.jsv.2011.08.002

    Article  Google Scholar 

  26. Iranmanesh A (2017) A 2D numerical study on suppressing liquid sloshing using a submerged cylinder. Ocean Eng 138:55–72. https://doi.org/10.1016/j.oceaneng.2017.04.022

    Article  Google Scholar 

  27. Cho IH, Choi J, Kim MH (2017) Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle. Ocean Eng 138:23–34. https://doi.org/10.1016/j.oceaneng.2017.04.005

    Article  Google Scholar 

  28. Kim Y (2001) Numerical simulation of sloshing flows with impact load. Appl Ocean Res 23:53–62. https://doi.org/10.1016/S0141-1187(00)00021-3

    Article  Google Scholar 

  29. Ibrahim RA (2005) Liquid sloshing dynamics—theory and applications. Cambridge University Press, Newyork

    Book  Google Scholar 

  30. Faltinsen OM, Timokha AN (2009) Sloshing. Cambridge University Press, Newyork

    MATH  Google Scholar 

  31. Sannasiraj SA (1996) Dynamics of long floating structures in directional waves. Ph.D. Thesis, Indian Institute of Technology Madras, India

    Google Scholar 

  32. Nasar T, Sannasiraj SA, Sundar V (2008) Liquid sloshing dynamics in a barge carrying container. Fluid Dyn Res 40:427–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nasar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasar, T., Sannasiraj, S.A. (2019). Experimental Investigation on Effect of Submerged Solid Baffle in a Barge Carrying Liquid Sloshing Tank. In: Murali, K., Sriram, V., Samad, A., Saha, N. (eds) Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). Lecture Notes in Civil Engineering, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-13-3119-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3119-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3118-3

  • Online ISBN: 978-981-13-3119-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics