Skip to main content

Uterine Mesenchymal Lesions

  • Chapter
  • First Online:
Gynecologic and Obstetric Pathology, Volume 2

Abstract

This chapter will cover the pathology of uterine mesenchymal tumors, including endometrial stromal neoplasms, undifferentiated uterine sarcomas, uterine tumors resembling ovarian sex cord-stromal tumors (UTROSCT), smooth muscle tumors, perivascular epithelioid cell tumor (PEComa), Mullerian adenosarcoma, and inflammatory myofibroblastic tumor, as well as some less common mesenchymal tumors that may be encountered in the uterus. The salient histopathologic, immunophenotypic, as well as molecular findings that help separate these different tumor types will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conklin CM, Longacre TA. Endometrial stromal tumors: the new WHO classification. Adv Anat Pathol. 2014;21(6):383–93.

    Article  CAS  PubMed  Google Scholar 

  2. Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumours of female reproductive organs. 4th ed. Lyon: IARC; 2014.

    Google Scholar 

  3. Tavassoli FA, Norris HJ. Mesenchymal tumours of the uterus. VII. A clinicopathological study of 60 endometrial stromal nodules. Histopathology. 1981;5(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Oliva E, Clement PB, Young RH. Endometrial stromal tumors: an update on a group of tumors with a protean phenotype. Adv Anat Pathol. 2000;7(5):257–81.

    Article  CAS  PubMed  Google Scholar 

  5. Fekete PS, Vellios F. The clinical and histologic spectrum of endometrial stromal neoplasms: a report of 41 cases. Int J Gynecol Pathol. 1984;3(2):198–212.

    Article  CAS  PubMed  Google Scholar 

  6. Dionigi A, et al. Endometrial stromal nodules and endometrial stromal tumors with limited infiltration: a clinicopathologic study of 50 cases. Am J Surg Pathol. 2002;26(5):567–81.

    Article  PubMed  Google Scholar 

  7. Chang KL, et al. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol. 1990;14(5):415–38.

    Article  CAS  PubMed  Google Scholar 

  8. Oliva E, et al. Cellular benign mesenchymal tumors of the uterus. A comparative morphologic and immunohistochemical analysis of 33 highly cellular leiomyomas and six endometrial stromal nodules, two frequently confused tumors. Am J Surg Pathol. 1995;19(7):757–68.

    Article  CAS  PubMed  Google Scholar 

  9. McCluggage WG, et al. Endometrial stromal sarcoma with sex cord-like areas and focal rhabdoid differentiation. Histopathology. 1996;29(4):369–74.

    Article  CAS  PubMed  Google Scholar 

  10. Oliva E, et al. Mixed endometrial stromal and smooth muscle tumors of the uterus: a clinicopathologic study of 15 cases. Am J Surg Pathol. 1998;22(8):997–1005.

    Article  CAS  PubMed  Google Scholar 

  11. Baker P, Oliva E. Endometrial stromal tumours of the uterus: a practical approach using conventional morphology and ancillary techniques. J Clin Pathol. 2007;60(3):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nucci MR. Practical issues related to uterine pathology: endometrial stromal tumors. Mod Pathol. 2016;29(Suppl 1):S92–103.

    Article  PubMed  Google Scholar 

  13. Harlow BL, Weiss NS, Lofton S. The epidemiology of sarcomas of the uterus. J Natl Cancer Inst. 1986;76(3):399–402.

    CAS  PubMed  Google Scholar 

  14. Abeler VM, et al. Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology. 2009;54(3):355–64.

    Article  PubMed  Google Scholar 

  15. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  16. Chu P, Arber DA. Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms. Frequent expression in renal cell carcinoma and endometrial stromal sarcoma. Am J Clin Pathol. 2000;113(3):374–82.

    Article  CAS  PubMed  Google Scholar 

  17. Chu PG, et al. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  18. Toki T, et al. CD10 is a marker for normal and neoplastic endometrial stromal cells. Int J Gynecol Pathol. 2002;21(1):41–7.

    Article  PubMed  Google Scholar 

  19. Sumathi VP, McCluggage WG. CD10 is useful in demonstrating endometrial stroma at ectopic sites and in confirming a diagnosis of endometriosis. J Clin Pathol. 2002;55(5):391–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliva E, et al. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26(4):403–12.

    Article  PubMed  Google Scholar 

  21. Zhu XQ, et al. Immunohistochemical markers in differential diagnosis of endometrial stromal sarcoma and cellular leiomyoma. Gynecol Oncol. 2004;92(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  22. Abeler VM, Nenodovic M. Diagnostic immunohistochemistry in uterine sarcomas: a study of 397 cases. Int J Gynecol Pathol. 2011;30(3):236–43.

    Article  PubMed  Google Scholar 

  23. Parra-Herran CE, et al. Targeted development of specific biomarkers of endometrial stromal cell differentiation using bioinformatics: the IFITM1 model. Mod Pathol. 2014;27(4):569–79.

    Article  CAS  PubMed  Google Scholar 

  24. Jung CK, et al. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21(6):756–63.

    Article  CAS  PubMed  Google Scholar 

  25. Lloreta J, Prat J. Endometrial stromal nodule with smooth and skeletal muscle components simulating stromal sarcoma. Int J Gynecol Pathol. 1992;11(4):293–8.

    Article  CAS  PubMed  Google Scholar 

  26. Clement PB. The pathology of uterine smooth muscle tumors and mixed endometrial stromal-smooth muscle tumors: a selective review with emphasis on recent advances. Int J Gynecol Pathol. 2000;19(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  27. Oliva E, Clement PB, Young RH. Epithelioid endometrial and endometrioid stromal tumors: a report of four cases emphasizing their distinction from epithelioid smooth muscle tumors and other oxyphilic uterine and extrauterine tumors. Int J Gynecol Pathol. 2002;21(1):48–55.

    Article  PubMed  Google Scholar 

  28. Oliva E, et al. Myxoid and fibrous endometrial stromal tumors of the uterus: a report of 10 cases. Int J Gynecol Pathol. 1999;18(4):310–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz A, Rush DS, Soslow RA. Endometrial stromal sarcomas with unusual histologic features: a report of 24 primary and metastatic tumors emphasizing fibroblastic and smooth muscle differentiation. Am J Surg Pathol. 2002;26(9):1142–50.

    Article  PubMed  Google Scholar 

  30. Clement PB, Scully RE. Endometrial stromal sarcomas of the uterus with extensive endometrioid glandular differentiation: a report of three cases that caused problems in differential diagnosis. Int J Gynecol Pathol. 1992;11(3):163–73.

    Article  CAS  PubMed  Google Scholar 

  31. Kim HS, et al. Fibromyxoid variant of endometrial stromal sarcoma with atypical bizarre nuclei. Int J Clin Exp Pathol. 2015;8(3):3316–21.

    PubMed  PubMed Central  Google Scholar 

  32. Stewart CJ, et al. Evaluation of fluorescence in-situ hybridization in monomorphic endometrial stromal neoplasms and their histological mimics: a review of 49 cases. Histopathology. 2014;65(4):473–82.

    Article  PubMed  Google Scholar 

  33. McCluggage WG, Ganesan R, Herrington CS. Endometrial stromal sarcomas with extensive endometrioid glandular differentiation: report of a series with emphasis on the potential for misdiagnosis and discussion of the differential diagnosis. Histopathology. 2009;54(3):365–73.

    Article  PubMed  Google Scholar 

  34. Goldblum JR, Clement PB, Hart WR. Adenomyosis with sparse glands. A potential mimic of low-grade endometrial stromal sarcoma. Am J Clin Pathol. 1995;103(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  35. Koontz JI, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Micci F, et al. Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet. 2003;144(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  37. Hrzenjak A, et al. JAZF1/JJAZ1 gene fusion in endometrial stromal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn. 2005;7(3):388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nucci MR, et al. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70.

    Article  PubMed  Google Scholar 

  39. Huang HY, Ladanyi M, Soslow RA. Molecular detection of JAZF1-JJAZ1 gene fusion in endometrial stromal neoplasms with classic and variant histology: evidence for genetic heterogeneity. Am J Surg Pathol. 2004;28(2):224–32.

    Article  PubMed  Google Scholar 

  40. Oliva E, et al. High frequency of JAZF1-JJAZ1 gene fusion in endometrial stromal tumors with smooth muscle differentiation by interphase FISH detection. Am J Surg Pathol. 2007;31(8):1277–84.

    Article  PubMed  Google Scholar 

  41. Chiang S, et al. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35(9):1364–72.

    Article  PubMed  Google Scholar 

  42. Li H, et al. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321(5894):1357–61.

    Article  CAS  PubMed  Google Scholar 

  43. Micci F, et al. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res. 2006;66(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  44. Panagopoulos I, Mertens F, Griffin CA. An endometrial stromal sarcoma cell line with the JAZF1/PHF1 chimera. Cancer Genet Cytogenet. 2008;185(2):74–7.

    Article  CAS  PubMed  Google Scholar 

  45. D’Angelo E, et al. Endometrial stromal sarcomas with sex cord differentiation are associated with PHF1 rearrangement. Am J Surg Pathol. 2013;37(4):514–21.

    Article  PubMed  Google Scholar 

  46. Ali RH, et al. Molecular characterization of a population-based series of endometrial stromal sarcomas in Kuwait. Hum Pathol. 2014;45(12):2453–62.

    Article  CAS  PubMed  Google Scholar 

  47. Panagopoulos I, et al. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One. 2012;7(6):e39354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Micci F, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett. 2014;347(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  49. Brunetti M, et al. Identification of an EPC2-PHF1 fusion transcript in low-grade endometrial stromal sarcoma. Oncotarget. 2018;9(27):19203–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schoolmeester JK, et al. Analysis of MDM2 amplification in 43 endometrial stromal tumors: a potential diagnostic pitfall. Int J Gynecol Pathol. 2015;34(6):576–83.

    Article  CAS  PubMed  Google Scholar 

  51. Oliva E. Practical issues in uterine pathology from banal to bewildering: the remarkable spectrum of smooth muscle neoplasia. Mod Pathol. 2016;29(Suppl 1):S104–20.

    Article  CAS  PubMed  Google Scholar 

  52. Clement PB, Young RH, Scully RE. Intravenous leiomyomatosis of the uterus. A clinicopathological analysis of 16 cases with unusual histologic features. Am J Surg Pathol. 1988;12(12):932–45.

    Article  CAS  PubMed  Google Scholar 

  53. Nogales FF, et al. Uterine intravascular leiomyomatosis: an update and report of seven cases. Int J Gynecol Pathol. 1987;6(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mulvany NJ, et al. Intravenous leiomyomatosis of the uterus: a clinicopathologic study of 22 cases. Int J Gynecol Pathol. 1994;13(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  55. Coard KC, Fletcher HM. Leiomyosarcoma of the uterus with a florid intravascular component (“intravenous leiomyosarcomatosis”). Int J Gynecol Pathol. 2002;21(2):182–5.

    Article  PubMed  Google Scholar 

  56. Nucci MR, et al. h-Caldesmon expression effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Am J Surg Pathol. 2001;25(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  57. Abrams J, Talcott J, Corson JM. Pulmonary metastases in patients with low-grade endometrial stromal sarcoma. Clinicopathologic findings with immunohistochemical characterization. Am J Surg Pathol. 1989;13(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  58. Franquemont DW, Frierson HF Jr, Mills SE. An immunohistochemical study of normal endometrial stroma and endometrial stromal neoplasms. Evidence for smooth muscle differentiation. Am J Surg Pathol. 1991;15(9):861–70.

    Article  CAS  PubMed  Google Scholar 

  59. Rush DS, et al. h-Caldesmon, a novel smooth muscle-specific antibody, distinguishes between cellular leiomyoma and endometrial stromal sarcoma. Am J Surg Pathol. 2001;25(2):253–8.

    Article  CAS  PubMed  Google Scholar 

  60. Busca A, et al. IFITM1 outperforms CD10 in differentiating low-grade endometrial stromal sarcomas from smooth muscle neoplasms of the uterus. Int J Gynecol Pathol. 2018;37(4):372–8.

    Article  CAS  PubMed  Google Scholar 

  61. Clement PB, Scully RE. Uterine tumors resembling ovarian sex-cord tumors. A clinicopathologic analysis of fourteen cases. Am J Clin Pathol. 1976;66(3):512–25.

    Article  CAS  PubMed  Google Scholar 

  62. Seagle BL, et al. Low-grade and high-grade endometrial stromal sarcoma: a National Cancer Database study. Gynecol Oncol. 2017;146(2):254–62.

    Article  PubMed  Google Scholar 

  63. Gadducci A, et al. Endometrial stromal sarcoma: analysis of treatment failures and survival. Gynecol Oncol. 1996;63(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  64. Aubry MC, et al. Endometrial stromal sarcoma metastatic to the lung: a detailed analysis of 16 patients. Am J Surg Pathol. 2002;26(4):440–9.

    Article  PubMed  Google Scholar 

  65. Rauh-Hain JA, et al. Endometrial stromal sarcoma: a clinicopathologic study of 29 patients. J Reprod Med. 2014;59(11–12):547–52.

    PubMed  Google Scholar 

  66. Lee CH, Nucci MR. Endometrial stromal sarcoma—the new genetic paradigm. Histopathology. 2015;67(1):1–19.

    Article  PubMed  Google Scholar 

  67. Lee CH, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee CH, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53.

    Article  PubMed  Google Scholar 

  69. Sciallis AP, et al. High-grade endometrial stromal sarcomas: a clinicopathologic study of a group of tumors with heterogenous morphologic and genetic features. Am J Surg Pathol. 2014;38(9):1161–72.

    Article  PubMed  Google Scholar 

  70. Lee CH, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Aisagbonhi O, et al. YWHAE rearrangement in a purely conventional low-grade endometrial stromal sarcoma that transformed over time to high-grade sarcoma: importance of molecular testing. Int J Gynecol Pathol. 2018;37:441–7.

    CAS  PubMed  Google Scholar 

  72. Croce S, et al. YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Mod Pathol. 2013;26(10):1390–400.

    Article  CAS  PubMed  Google Scholar 

  73. Shah VI, McCluggage WG. Cyclin D1 does not distinguish YWHAE-NUTM2 high-grade endometrial stromal sarcoma from undifferentiated endometrial carcinoma. Am J Surg Pathol. 2015;39(5):722–4.

    Article  PubMed  Google Scholar 

  74. Marino-Enriquez A, et al. BCOR internal tandem duplication in high-grade uterine sarcomas. Am J Surg Pathol. 2018;42(3):335–41.

    Article  PubMed  Google Scholar 

  75. Lee CH, et al. Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement. Mod Pathol. 2014;27(5):751–7.

    Article  CAS  PubMed  Google Scholar 

  76. Chiang S, et al. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod Pathol. 2017;30(9):1251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Isphording A, et al. YWHAE-FAM22 endometrial stromal sarcoma: diagnosis by reverse transcription-polymerase chain reaction in formalin-fixed, paraffin-embedded tumor. Hum Pathol. 2013;44(5):837–43.

    Article  CAS  PubMed  Google Scholar 

  78. Hemming ML, et al. YWHAE-rearranged high-grade endometrial stromal sarcoma: two-center case series and response to chemotherapy. Gynecol Oncol. 2017;145(3):531–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lewis N, et al. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol. 2018;31(4):674–84.

    Article  PubMed  Google Scholar 

  80. Hoang LN, et al. Novel high-grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma. Am J Surg Pathol. 2017;41(1):12–24.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mansor S, et al. ZC3H7B-BCOR-rearranged endometrial stromal sarcomas: a distinct subset merits its own classification? Int J Gynecol Pathol. 2018; https://doi.org/10.1097/PGP.0000000000000523.

  82. Panagopoulos I, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52(7):610–8.

    CAS  PubMed  Google Scholar 

  83. Kurihara S, et al. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38.

    Article  PubMed  Google Scholar 

  84. Jakate K, et al. Endometrial sarcomas: an immunohistochemical and JAZF1 re-arrangement study in low-grade and undifferentiated tumors. Mod Pathol. 2013;26(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  85. Halbwedl I, et al. Chromosomal alterations in low-grade endometrial stromal sarcoma and undifferentiated endometrial sarcoma as detected by comparative genomic hybridization. Gynecol Oncol. 2005;97(2):582–7.

    Article  CAS  PubMed  Google Scholar 

  86. Sardinha R, et al. Endometrial stromal tumors: immunohistochemical and molecular analysis of potential targets of tyrosine kinase inhibitors. Clin Sarcoma Res. 2013;3(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanner EJ, et al. High grade undifferentiated uterine sarcoma: surgery, treatment, and survival outcomes. Gynecol Oncol. 2012;127(1):27–31.

    Article  PubMed  Google Scholar 

  88. Hardell E, et al. Validation of a mitotic index cutoff as a prognostic marker in undifferentiated uterine sarcomas. Am J Surg Pathol. 2017;41(9):1231–7.

    Article  PubMed  Google Scholar 

  89. Stemme S, Ghaderi M, Carlson JW. Diagnosis of endometrial stromal tumors: a clinicopathologic study of 25 biopsy specimens with identification of problematic areas. Am J Clin Pathol. 2014;141(1):133–9.

    Article  PubMed  Google Scholar 

  90. de Leval L, et al. Diverse phenotypic profile of uterine tumors resembling ovarian sex cord tumors: an immunohistochemical study of 12 cases. Am J Surg Pathol. 2010;34(12):1749–61.

    Article  PubMed  Google Scholar 

  91. Bakula-Zalewska E, et al. Uterine tumors resembling ovarian sex cord tumors, a clinicopathologic study of six cases. Ann Diagn Pathol. 2014;18(6):329–32.

    Article  PubMed  Google Scholar 

  92. Irving JA, Carinelli S, Prat J. Uterine tumors resembling ovarian sex cord tumors are polyphenotypic neoplasms with true sex cord differentiation. Mod Pathol. 2006;19(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  93. Blake EA, et al. Clinical characteristics and outcomes of uterine tumors resembling ovarian sex-cord tumors (UTROSCT): a systematic review of literature. Eur J Obstet Gynecol Reprod Biol. 2014;181:163–70.

    Article  PubMed  Google Scholar 

  94. Hurrell DP, McCluggage WG. Uterine tumour resembling ovarian sex cord tumour is an immunohistochemically polyphenotypic neoplasm which exhibits coexpression of epithelial, myoid and sex cord markers. J Clin Pathol. 2007;60(10):1148–54.

    Article  CAS  PubMed  Google Scholar 

  95. Stewart CJ, Crook M, Tan A. SF1 immunohistochemistry is useful in differentiating uterine tumours resembling sex cord-stromal tumours from potential histological mimics. Pathology. 2016;48(5):434–40.

    Article  CAS  PubMed  Google Scholar 

  96. Croce S, et al. Uterine tumor resembling ovarian sex cord tumor (UTROSCT) commonly exhibits positivity with sex cord markers FOXL2 and SF-1 but lacks FOXL2 and DICER1 mutations. Int J Gynecol Pathol. 2016;35(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  97. Baker RJ, et al. Inhibin and CD99 (MIC2) expression in uterine stromal neoplasms with sex-cord-like elements. Hum Pathol. 1999;30(6):671–9.

    Article  CAS  PubMed  Google Scholar 

  98. McCluggage WG. Uterine tumours resembling ovarian sex cord tumours: immunohistochemical evidence for true sex cord differentiation. Histopathology. 1999;34(4):375–6.

    Article  CAS  PubMed  Google Scholar 

  99. Krishnamurthy S, et al. Uterine tumors resembling ovarian sex-cord tumors have an immunophenotype consistent with true sex-cord differentiation. Am J Surg Pathol. 1998;22(9):1078–82.

    Article  CAS  PubMed  Google Scholar 

  100. Mohammadizadeh F, et al. Extensive overgrowth of sex cord-like differentiation in uterine mullerian adenosarcoma: a rare and challenging entity. Int J Gynecol Pathol. 2016;35(2):153–61.

    Article  PubMed  Google Scholar 

  101. Staats PN, et al. Uterine tumors resembling ovarian sex cord tumors (UTROSCT) lack the JAZF1-JJAZ1 translocation frequently seen in endometrial stromal tumors. Am J Surg Pathol. 2009;33(8):1206–12.

    Article  PubMed  Google Scholar 

  102. Nucci MRSJ, Sukov W, Oliva E. Uterine tumors resembling ovarian sex cord tumor (UTROSCT) lack rearrangement of PHF1 by FISH. Mod Pathol. 2014;27:298A.

    Google Scholar 

  103. Chiang S, et al. FOXL2 mutation is absent in uterine tumors resembling ovarian sex cord tumors. Am J Surg Pathol. 2015;39(5):618–23.

    Article  PubMed  Google Scholar 

  104. Wang J, et al. Uterine tumor resembling ovarian sex cord tumor: report of a case with t(X;6)(p22.3;q23.1) and t(4,;18)(q21.1;q21.3). Diagn Mol Pathol. 2003;12(3):174–80.

    Article  PubMed  Google Scholar 

  105. Liu CY, et al. Clinical experience of uterine tumors resembling ovarian sex cord tumors: a clinicopathological analysis of 6 cases. Int J Clin Exp Pathol. 2015;8(4):4158–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Watrowski R, et al. Hysteroscopic treatment of uterine tumor resembling ovarian sex cord-like tumor (UTROSCT). Gynecol Endocrinol. 2015;31(11):856–9.

    PubMed  Google Scholar 

  107. Marshall LM, et al. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90(6):967–73.

    Article  CAS  PubMed  Google Scholar 

  108. Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293–8.

    Article  CAS  PubMed  Google Scholar 

  109. Buttram VC Jr. Uterine leiomyomata—aetiology, symptomatology and management. Prog Clin Biol Res. 1986;225:275–96.

    PubMed  Google Scholar 

  110. Stewart EA, Nowak RA. Leiomyoma-related bleeding: a classic hypothesis updated for the molecular era. Hum Reprod Update. 1996;2(4):295–306.

    Article  CAS  PubMed  Google Scholar 

  111. Stovall DW, et al. Uterine leiomyomas reduce the efficacy of assisted reproduction cycles: results of a matched follow-up study. Hum Reprod. 1998;13(1):192–7.

    Article  CAS  PubMed  Google Scholar 

  112. Bourlev V, et al. Different proliferative and apoptotic activity in peripheral versus central parts of human uterine leiomyomas. Gynecol Obstet Investig. 2003;55(4):199–204.

    Article  Google Scholar 

  113. Kawaguchi K, et al. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol. 1989;160(3):637–41.

    Article  CAS  PubMed  Google Scholar 

  114. Maluf HM, Gersell DJ. Uterine leiomyomas with high content of mast cells. Arch Pathol Lab Med. 1994;118(7):712–4.

    CAS  PubMed  Google Scholar 

  115. Orii A, et al. Mast cells in smooth muscle tumors of the uterus. Int J Gynecol Pathol. 1998;17(4):336–42.

    Article  CAS  PubMed  Google Scholar 

  116. Ferry JA, Harris NL, Scully RE. Uterine leiomyomas with lymphoid infiltration simulating lymphoma. A report of seven cases. Int J Gynecol Pathol. 1989;8(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  117. Chuang SS, et al. Uterine leiomyoma with massive lymphocytic infiltration simulating malignant lymphoma. A case report with immunohistochemical study showing that the infiltrating lymphocytes are cytotoxic T cells. Pathol Res Pract. 2001;197(2):135–8.

    CAS  PubMed  Google Scholar 

  118. Fonseca MCM, et al. Uterine artery embolization and surgical methods for the treatment of symptomatic uterine leiomyomas: a systemic review and meta-analysis followed by indirect treatment comparison. Clin Ther. 2017;39(7):1438–1455.e2.

    Article  PubMed  Google Scholar 

  119. Mark J, et al. Chromosomal patterns in human benign uterine leiomyomas. Cancer Genet Cytogenet. 1990;44(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  120. Meloni AM, et al. Uterine leiomyomas: cytogenetic and histologic profile. Obstet Gynecol. 1992;80(2):209–17.

    CAS  PubMed  Google Scholar 

  121. Nilbert M, et al. Karyotypic rearrangements in 20 uterine leiomyomas. Cytogenet Cell Genet. 1988;49(4):300–4.

    Article  CAS  PubMed  Google Scholar 

  122. Pandis N, et al. Chromosome analysis of 96 uterine leiomyomas. Cancer Genet Cytogenet. 1991;55(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  123. Rein MS, et al. Cytogenetic abnormalities in uterine leiomyomata. Obstet Gynecol. 1991;77(6):923–6.

    CAS  PubMed  Google Scholar 

  124. Fletcher JA, et al. Chromosome aberrations in uterine smooth muscle tumors: potential diagnostic relevance of cytogenetic instability. Cancer Res. 1990;50(13):4092–7.

    CAS  PubMed  Google Scholar 

  125. Makinen N, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.

    Article  PubMed  CAS  Google Scholar 

  126. Schwetye KE, Pfeifer JD, Duncavage EJ. MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 2014;45(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  127. Bertsch E, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang Q, et al. Molecular analyses of 6 different types of uterine smooth muscle tumors: emphasis in atypical leiomyoma. Cancer. 2014;120(20):3165–77.

    Article  CAS  PubMed  Google Scholar 

  129. Markowski DN, et al. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer. 2013;52(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  130. Matsubara A, et al. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61.

    Article  PubMed  Google Scholar 

  131. Mehine M, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  132. Nilbert M, et al. Characteristic chromosome abnormalities, including rearrangements of 6p, del(7q), +12, and t(12;14), in 44 uterine leiomyomas. Hum Genet. 1990;85(6):605–11.

    Article  CAS  PubMed  Google Scholar 

  133. Nibert M, Heim S. Uterine leiomyoma cytogenetics. Genes Chromosomes Cancer. 1990;2(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  134. Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet. 2000;121(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  135. Xing YP, Powell WL, Morton CC. The del(7q) subgroup in uterine leiomyomata: genetic and biologic characteristics. Further evidence for the secondary nature of cytogenetic abnormalities in the pathobiology of uterine leiomyomata. Cancer Genet Cytogenet. 1997;98(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  136. Ozisik YY, et al. Deletion 7q22 in uterine leiomyoma. A cytogenetic review. Cancer Genet Cytogenet. 1993;71(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  137. Sargent MS, et al. Translocations in 7q22 define a critical region in uterine leiomyomata. Cancer Genet Cytogenet. 1994;77(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  138. Lepine LA, et al. Hysterectomy surveillance—United States, 1980–1993. MMWR CDC Surveill Summ. 1997;46(4):1–15.

    CAS  PubMed  Google Scholar 

  139. Practice Committee of the American Society for Reproductive Medicine. Electronic address, A.a.o. and M. Practice Committee of the American Society for Reproductive. Removal of myomas in asymptomatic patients to improve fertility and/or reduce miscarriage rate: a guideline. Fertil Steril. 2017;108(3):416–25.

    Article  Google Scholar 

  140. Einstein MH, et al. Management of uterine malignancy found incidentally after supracervical hysterectomy or uterine morcellation for presumed benign disease. Int J Gynecol Cancer. 2008;18(5):1065–70.

    Article  CAS  PubMed  Google Scholar 

  141. Seidman MA, et al. Peritoneal dissemination complicating morcellation of uterine mesenchymal neoplasms. PLoS One. 2012;7(11):e50058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. You JH, Sahota DS, Yuen PM. Uterine artery embolization, hysterectomy, or myomectomy for symptomatic uterine fibroids: a cost-utility analysis. Fertil Steril. 2009;91(2):580–8.

    Article  PubMed  Google Scholar 

  143. de Blok S, et al. Fatal sepsis after uterine artery embolization with microspheres. J Vasc Interv Radiol. 2003;14(6):779–83.

    Article  PubMed  Google Scholar 

  144. Vashisht A, et al. Fatal septicaemia after fibroid embolisation. Lancet. 1999;354(9175):307–8.

    Article  CAS  PubMed  Google Scholar 

  145. Dover RW, Ferrier AJ, Torode HW. Sarcomas and the conservative management of uterine fibroids: a cause for concern? Aust N Z J Obstet Gynaecol. 2000;40(3):308–12.

    Article  CAS  PubMed  Google Scholar 

  146. Vilos GA, et al. The management of uterine leiomyomas. J Obstet Gynaecol Can. 2015;37(2):157–78.

    Article  PubMed  Google Scholar 

  147. Singh SS, et al. The past, present, and future of selective progesterone receptor modulators in the management of uterine fibroids. Am J Obstet Gynecol. 2018;218(6):563–72. e1

    Article  CAS  PubMed  Google Scholar 

  148. Tiltman AJ. The effect of progestins on the mitotic activity of uterine fibromyomas. Int J Gynecol Pathol. 1985;4(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  149. Prayson RA, Hart WR. Mitotically active leiomyomas of the uterus. Am J Clin Pathol. 1992;97(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  150. O'Connor DM, Norris HJ. Mitotically active leiomyomas of the uterus. Hum Pathol. 1990;21(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  151. Dgani R, et al. Clinical-pathological study of uterine leiomyomas with high mitotic activity. Acta Obstet Gynecol Scand. 1998;77(1):74–7.

    CAS  PubMed  Google Scholar 

  152. Perrone T, Dehner LP. Prognostically favorable “mitotically active” smooth-muscle tumors of the uterus. A clinicopathologic study of ten cases. Am J Surg Pathol. 1988;12(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  153. Makinen N, et al. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol Cancer. 2017;16(1):101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Makinen N, et al. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21(11):1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hodge JC, et al. Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am J Obstet Gynecol. 2014;210(6):572.e1–7.

    Article  CAS  Google Scholar 

  156. Ozisik YY, et al. Involvement of 10q22 in leiomyoma. Cancer Genet Cytogenet. 1993;69(2):132–5.

    Article  CAS  PubMed  Google Scholar 

  157. Hodge JC, et al. Molecular and cytogenetic characterization of plexiform leiomyomata provide further evidence for genetic heterogeneity underlying uterine fibroids. Am J Pathol. 2008;172(5):1403–10.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Seidman JD, Thomas RM. Multiple plexiform tumorlets of the uterus. Arch Pathol Lab Med. 1993;117(12):1255–6.

    CAS  PubMed  Google Scholar 

  159. Kaminski PF, Tavassoli FA. Plexiform tumorlet: a clinical and pathologic study of 15 cases with ultrastructural observations. Int J Gynecol Pathol. 1984;3(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  160. Prayson RA, Goldblum JR, Hart WR. Epithelioid smooth-muscle tumors of the uterus: a clinicopathologic study of 18 patients. Am J Surg Pathol. 1997;21(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  161. Jones MW, Norris HJ. Clinicopathologic study of 28 uterine leiomyosarcomas with metastasis. Int J Gynecol Pathol. 1995;14(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  162. Karaiskos C, et al. Cytogenetic findings in uterine epithelioid leiomyomas. Cancer Genet Cytogenet. 1995;80(2):103–6.

    Article  CAS  PubMed  Google Scholar 

  163. Haimes JD, et al. Uterine inflammatory myofibroblastic tumors frequently harbor ALK fusions with IGFBP5 and THBS1. Am J Surg Pathol. 2017;41(6):773–80.

    Article  PubMed  Google Scholar 

  164. Roth LM, Reed RJ, Sternberg WH. Cotyledonoid dissecting leiomyoma of the uterus. The Sternberg tumor. Am J Surg Pathol. 1996;20(12):1455–61.

    Article  CAS  PubMed  Google Scholar 

  165. Roth LM, Reed RJ. Cotyledonoid leiomyoma of the uterus: report of a case. Int J Gynecol Pathol. 2000;19(3):272–5.

    Article  CAS  PubMed  Google Scholar 

  166. Smith CC, et al. Cotyledonoid dissecting leiomyoma of the uterus: a review of clinical, pathological, and radiological features. Int J Surg Pathol. 2012;20(4):330–41.

    Article  PubMed  Google Scholar 

  167. Shintaku M. Lipoleiomyomatous tumors of the uterus: a heterogeneous group? Histopathological study of five cases. Pathol Int. 1996;46(7):498–502.

    Article  CAS  PubMed  Google Scholar 

  168. Pedeutour F, et al. Dysregulation of HMGIC in a uterine lipoleiomyoma with a complex rearrangement including chromosomes 7, 12, and 14. Genes Chromosomes Cancer. 2000;27(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  169. Hu J, Surti U, Tobon H. Cytogenetic analysis of a uterine lipoleiomyoma. Cancer Genet Cytogenet. 1992;62(2):200–2.

    Article  CAS  PubMed  Google Scholar 

  170. McDonald AG, et al. Liposarcoma arising in uterine lipoleiomyoma: a report of 3 cases and review of the literature. Am J Surg Pathol. 2011;35(2):221–7.

    Article  PubMed  Google Scholar 

  171. Gupta M, et al. Angioleiomyoma of uterus: a clinicopathologic study of 6 cases. Int J Surg Pathol. 2018;26(1):18–23.

    Article  PubMed  Google Scholar 

  172. Matsuyama A, Hisaoka M, Hashimoto H. Angioleiomyoma: a clinicopathologic and immunohistochemical reappraisal with special reference to the correlation with myopericytoma. Hum Pathol. 2007;38(4):645–51.

    Article  CAS  PubMed  Google Scholar 

  173. Mulvany NJ, Ostor AG, Ross I. Diffuse leiomyomatosis of the uterus. Histopathology. 1995;27(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  174. Baschinsky DY, et al. Diffuse leiomyomatosis of the uterus: a case report with clonality analysis. Hum Pathol. 2000;31(11):1429–32.

    Article  CAS  PubMed  Google Scholar 

  175. Ordulu Z, et al. Intravenous leiomyomatosis: an unusual intermediate between benign and malignant uterine smooth muscle tumors. Mod Pathol. 2016;29(5):500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Norris HJ, Parmley T. Mesenchymal tumors of the uterus. V. Intravenous leiomyomatosis. A clinical and pathologic study of 14 cases. Cancer. 1975;36(6):2164–78.

    Article  CAS  PubMed  Google Scholar 

  177. Kir G, et al. Estrogen and progesterone expression of vessel walls with intravascular leiomyomatosis; discussion of histogenesis. Eur J Gynaecol Oncol. 2004;25(3):362–6.

    CAS  PubMed  Google Scholar 

  178. Lam PM, et al. Intravenous leiomyomatosis with atypical histologic features: a case report. Int J Gynecol Cancer. 2003;13(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  179. Buza N, et al. Recurrent chromosomal aberrations in intravenous leiomyomatosis of the uterus: high-resolution array comparative genomic hybridization study. Hum Pathol. 2014;45(9):1885–92.

    Article  CAS  PubMed  Google Scholar 

  180. Dal Cin P, et al. Intravenous leiomyomatosis is characterized by a der(14)t(12;14)(q15;q24). Genes Chromosomes Cancer. 2003;36(2):205–6.

    Article  PubMed  Google Scholar 

  181. Wu RC, et al. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma. Oncotarget. 2017;8(29):47547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Patton KT, et al. Benign metastasizing leiomyoma: clonality, telomere length and clinicopathologic analysis. Mod Pathol. 2006;19(1):130–40.

    Article  CAS  PubMed  Google Scholar 

  183. Tietze L, et al. Benign metastasizing leiomyoma: a cytogenetically balanced but clonal disease. Hum Pathol. 2000;31(1):126–8.

    Article  CAS  PubMed  Google Scholar 

  184. Nucci MR, et al. Distinctive cytogenetic profile in benign metastasizing leiomyoma: pathogenetic implications. Am J Surg Pathol. 2007;31(5):737–43.

    Article  PubMed  Google Scholar 

  185. Lin J, Song X, Liu C. Pelvic intravascular leiomyomatosis associated with benign pulmonary metastasizing leiomyoma: clinicopathologic, clonality, and copy number variance analysis. Int J Gynecol Pathol. 2014;33(2):140–5.

    Article  PubMed  Google Scholar 

  186. Canzonieri V, et al. Leiomyomatosis with vascular invasion. A unified pathogenesis regarding leiomyoma with vascular microinvasion, benign metastasizing leiomyoma and intravenous leiomyomatosis. Virchows Arch. 1994;425(5):541–5.

    Article  CAS  PubMed  Google Scholar 

  187. Quade BJ, et al. Disseminated peritoneal leiomyomatosis. Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol. 1997;150(6):2153–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bisceglia M, et al. Selected case from the Arkadi M. Rywlin International Pathology Slide Series: Leiomyomatosis peritonealis disseminata: report of 3 cases with extensive review of the literature. Adv Anat Pathol. 2014;21(3):201–15.

    Article  PubMed  Google Scholar 

  189. Hardman WJ 3rd, Majmudar B. Leiomyomatosis peritonealis disseminata: clinicopathologic analysis of five cases. South Med J. 1996;89(3):291–4.

    Article  PubMed  Google Scholar 

  190. Al-Talib A, Tulandi T. Pathophysiology and possible iatrogenic cause of leiomyomatosis peritonealis disseminata. Gynecol Obstet Investig. 2010;69(4):239–44.

    Article  Google Scholar 

  191. Ordulu Z, et al. Disseminated peritoneal leiomyomatosis after laparoscopic supracervical hysterectomy with characteristic molecular cytogenetic findings of uterine leiomyoma. Genes Chromosomes Cancer. 2010;49(12):1152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Giuntoli RL 2nd, et al. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol. 2003;89(3):460–9.

    Article  PubMed  Google Scholar 

  193. Mittal K, Joutovsky A. Areas with benign morphologic and immunohistochemical features are associated with some uterine leiomyosarcomas. Gynecol Oncol. 2007;104(2):362–5.

    Article  CAS  PubMed  Google Scholar 

  194. Mittal KR, et al. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22(10):1303–11.

    Article  CAS  PubMed  Google Scholar 

  195. Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18(6):535–58.

    Article  CAS  PubMed  Google Scholar 

  196. Pautier P, et al. Analysis of clinicopathologic prognostic factors for 157 uterine sarcomas and evaluation of a grading score validated for soft tissue sarcoma. Cancer. 2000;88(6):1425–31.

    Article  CAS  PubMed  Google Scholar 

  197. Iwata J, Fletcher CD. Immunohistochemical detection of cytokeratin and epithelial membrane antigen in leiomyosarcoma: a systematic study of 100 cases. Pathol Int. 2000;50(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  198. Brown DC, et al. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology. 1987;11(5):477–86.

    Article  CAS  PubMed  Google Scholar 

  199. Gannon BR, Manduch M, Childs TJ. Differential immunoreactivity of p16 in leiomyosarcomas and leiomyoma variants. Int J Gynecol Pathol. 2008;27(1):68–73.

    Article  PubMed  Google Scholar 

  200. Hakverdi S, et al. Immunohistochemical analysis of p16 expression in uterine smooth muscle tumors. Eur J Gynaecol Oncol. 2011;32(5):513–5.

    CAS  PubMed  Google Scholar 

  201. Bodner-Adler B, et al. Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  202. Chen L, Yang B. Immunohistochemical analysis of p16, p53, and Ki-67 expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2008;27(3):326–32.

    Article  PubMed  Google Scholar 

  203. Lee CH, et al. A panel of antibodies to determine site of origin and malignancy in smooth muscle tumors. Mod Pathol. 2009;22(12):1519–31.

    Article  CAS  PubMed  Google Scholar 

  204. Liang Y, et al. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma. Int J Clin Exp Pathol. 2015;8(6):7196–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. O'Neill CJ, et al. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50(7):851–8.

    Article  CAS  PubMed  Google Scholar 

  206. Schaefer IM, et al. Abnormal p53 and p16 staining patterns distinguish uterine leiomyosarcoma from inflammatory myofibroblastic tumour. Histopathology. 2017;70(7):1138–46.

    Article  PubMed  Google Scholar 

  207. Allen MM, et al. An immunohistochemical analysis of stathmin 1 expression in uterine smooth muscle tumors: differential expression in leiomyosarcomas and leiomyomas. Int J Clin Exp Pathol. 2015;8(3):2795–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Kefeli M, et al. Fascin expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2009;28(4):328–33.

    Article  PubMed  Google Scholar 

  209. Cornejo K, Shi M, Jiang Z. Oncofetal protein IMP3: a useful diagnostic biomarker for leiomyosarcoma. Hum Pathol. 2012;43(10):1567–72.

    Article  CAS  PubMed  Google Scholar 

  210. Quade BJ, et al. Frequent loss of heterozygosity for chromosome 10 in uterine leiomyosarcoma in contrast to leiomyoma. Am J Pathol. 1999;154(3):945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hu J, et al. Genomic alterations in uterine leiomyosarcomas: potential markers for clinical diagnosis and prognosis. Genes Chromosomes Cancer. 2001;31(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  212. Cuppens T, et al. Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and targetable pathways. Int J Cancer. 2018;142(6):1230–43.

    Article  CAS  PubMed  Google Scholar 

  213. Chudasama P, et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun. 2018;9(1):144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Wang Z, et al. Survival of patients with metastatic leiomyosarcoma: the MD Anderson Clinical Center for targeted therapy experience. Cancer Med. 2016;5(12):3437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Makinen N, et al. Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. PLoS Genet. 2016;12(2):e1005850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Agaram NP, et al. Targeted exome sequencing profiles genetic alterations in leiomyosarcoma. Genes Chromosomes Cancer. 2016;55(2):124–30.

    Article  CAS  PubMed  Google Scholar 

  217. Yang CY, et al. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma. Am J Transl Res. 2015;7(10):2072–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ravegnini G, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  219. Liau JY, et al. Leiomyosarcoma with alternative lengthening of telomeres is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome. Am J Surg Pathol. 2015;39(2):236–44.

    Article  PubMed  Google Scholar 

  220. de Graaff MA, et al. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604.

    Article  PubMed  CAS  Google Scholar 

  221. Perot G, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kampjarvi K, et al. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107(10):1761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. de Graaff MA, et al. A translocation t(6;14) in two cases of leiomyosarcoma: molecular cytogenetic and array-based comparative genomic hybridization characterization. Cancer Genet. 2015;208(11):537–44.

    Article  PubMed  CAS  Google Scholar 

  224. Liau JY, et al. Comprehensive screening of alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas. Mod Pathol. 2015;28(12):1545–54.

    Article  CAS  PubMed  Google Scholar 

  225. Slatter TL, et al. Loss of ATRX and DAXX expression identifies poor prognosis for smooth muscle tumours of uncertain malignant potential and early stage uterine leiomyosarcoma. J Pathol Clin Res. 2015;1(2):95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zang Y, et al. Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis. Oncol Lett. 2018;15(6):9361–8.

    PubMed  PubMed Central  Google Scholar 

  227. An Y, et al. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment. BMC Cancer. 2017;17(1):639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Lim D, et al. Interobserver variability in the interpretation of tumor cell necrosis in uterine leiomyosarcoma. Am J Surg Pathol. 2013;37(5):650–8.

    Article  PubMed  Google Scholar 

  229. Zhang Q, et al. The selected biomarker analysis in 5 types of uterine smooth muscle tumors. Hum Pathol. 2018;76:17–27.

    Article  CAS  PubMed  Google Scholar 

  230. Parra-Herran C, et al. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course. Am J Surg Pathol. 2015;39(2):157–68.

    Article  PubMed  Google Scholar 

  231. Raspollini MR, et al. c-Kit expression in patients with uterine leiomyosarcomas: a potential alternative therapeutic treatment. Clin Cancer Res. 2004;10(10):3500–3.

    Article  CAS  PubMed  Google Scholar 

  232. Wang L, et al. The proto-oncogene c-kit is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2003;90(2):402–6.

    Article  CAS  PubMed  Google Scholar 

  233. Sah SP, McCluggage WG. DOG1 immunoreactivity in uterine leiomyosarcomas. J Clin Pathol. 2013;66(1):40–3.

    Article  CAS  PubMed  Google Scholar 

  234. McCluggage WG, et al. Rhabdomyosarcoma of the uterus: report of two cases, including one of the spindle cell variant. Int J Gynecol Cancer. 2002;12(1):128–32.

    Article  PubMed  Google Scholar 

  235. Lusby K, et al. Uterine leiomyosarcoma management, outcome, and associated molecular biomarkers: a single institution’s experience. Ann Surg Oncol. 2013;20(7):2364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Garcia C, et al. Clinical outcomes and prognostic markers in uterine leiomyosarcoma: a population-based cohort. Int J Gynecol Cancer. 2015;25(4):622–8.

    Article  PubMed  Google Scholar 

  237. Pellanda AF, et al. Outcome and prognostic factors in 110 consecutive patients with primary uterine leiomyosarcoma: a Rare Cancer Network study. Chin J Cancer Res. 2017;29(6):521–32.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Pelmus M, et al. Prognostic factors in early-stage leiomyosarcoma of the uterus. Int J Gynecol Cancer. 2009;19(3):385–90.

    Article  PubMed  Google Scholar 

  239. Mayerhofer K, et al. Leiomyosarcoma of the uterus: a clinicopathologic multicenter study of 71 cases. Gynecol Oncol. 1999;74(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  240. Bodner K, et al. Evaluating prognostic parameters in women with uterine leiomyosarcoma. A clinicopathologic study. J Reprod Med. 2003;48(2):95–100.

    PubMed  Google Scholar 

  241. Kapp DS, Shin JY, Chan JK. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer. 2008;112(4):820–30.

    Article  PubMed  Google Scholar 

  242. Davidson B, et al. Progesterone receptor expression is an independent prognosticator in FIGO stage I uterine leiomyosarcoma. Am J Clin Pathol. 2016;145(4):449–58.

    Article  CAS  PubMed  Google Scholar 

  243. Baek MH, et al. Androgen receptor as a prognostic biomarker and therapeutic target in uterine leiomyosarcoma. J Gynecol Oncol. 2018;29(3):e30.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Yasutake N, et al. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma. Histopathology. 2018;72(5):739–48.

    Article  PubMed  Google Scholar 

  245. Goff BA, et al. Uterine leiomyosarcoma and endometrial stromal sarcoma: lymph node metastases and sites of recurrence. Gynecol Oncol. 1993;50(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  246. Leitao MM, et al. Incidence of lymph node and ovarian metastases in leiomyosarcoma of the uterus. Gynecol Oncol. 2003;91(1):209–12.

    Article  PubMed  Google Scholar 

  247. Seagle BL, et al. Prognosis and treatment of uterine leiomyosarcoma: a National Cancer Database study. Gynecol Oncol. 2017;145(1):61–70.

    Article  PubMed  Google Scholar 

  248. George S, et al. Retrospective cohort study evaluating the impact of intraperitoneal morcellation on outcomes of localized uterine leiomyosarcoma. Cancer. 2014;120(20):3154–8.

    Article  PubMed  Google Scholar 

  249. Thanopoulou E, et al. Treatment of hormone positive uterine leiomyosarcoma with aromatase inhibitors. Clin Sarcoma Res. 2014;4:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. George S, et al. Phase 2 trial of aromatase inhibition with letrozole in patients with uterine leiomyosarcomas expressing estrogen and/or progesterone receptors. Cancer. 2014;120(5):738–43.

    Article  CAS  PubMed  Google Scholar 

  251. O’Cearbhaill R, et al. Treatment of advanced uterine leiomyosarcoma with aromatase inhibitors. Gynecol Oncol. 2010;116(3):424–9.

    Article  PubMed  CAS  Google Scholar 

  252. Cuppens T, et al. Potential targets’ analysis reveals dual PI3K/mTOR pathway inhibition as a promising therapeutic strategy for uterine leiomyosarcomas—an ENITEC Group Initiative. Clin Cancer Res. 2017;23(5):1274–85.

    Article  CAS  PubMed  Google Scholar 

  253. Dhingra S, et al. Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications. Int J Clin Exp Pathol. 2010;4(2):134–46.

    PubMed  PubMed Central  Google Scholar 

  254. Brewer Savannah KJ, et al. Dual targeting of mTOR and aurora-A kinase for the treatment of uterine leiomyosarcoma. Clin Cancer Res. 2012;18(17):4633–45.

    Article  CAS  PubMed  Google Scholar 

  255. Elvin JA, et al. Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Oncologist. 2017;22(4):416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Silva EG, et al. Uterine epithelioid leiomyosarcomas with clear cells: reactivity with HMB-45 and the concept of PEComa. Am J Surg Pathol. 2004;28(2):244–9.

    Article  PubMed  Google Scholar 

  257. Schoolmeester JK, et al. Perivascular epithelioid cell neoplasm (PEComa) of the gynecologic tract: clinicopathologic and immunohistochemical characterization of 16 cases. Am J Surg Pathol. 2014;38(2):176–88.

    Article  PubMed  Google Scholar 

  258. Parra-Herran C, et al. Myxoid leiomyosarcoma of the uterus: a clinicopathologic analysis of 30 cases and review of the literature with reappraisal of its distinction from other uterine myxoid mesenchymal neoplasms. Am J Surg Pathol. 2016;40(3):285–301.

    Article  PubMed  Google Scholar 

  259. Burch DM, Tavassoli FA. Myxoid leiomyosarcoma of the uterus. Histopathology. 2011;59(6):1144–55.

    Article  PubMed  Google Scholar 

  260. Devereaux KA, Kunder CA, Longacre TA. ALK-rearranged tumors are highly enriched in the STUMP subcategory of uterine tumors. Am J Surg Pathol. 2018; https://doi.org/10.1097/PAS.0000000000001083.

    Article  PubMed  Google Scholar 

  261. Gupta M, et al. Predictors of adverse outcome in uterine smooth muscle tumours of uncertain malignant potential (STUMP): a clinicopathological analysis of 22 cases with a proposal for the inclusion of additional histological parameters. Histopathology. 2018;73(2):284–98.

    Article  PubMed  Google Scholar 

  262. Croce S, Young RH, Oliva E. Uterine leiomyomas with bizarre nuclei: a clinicopathologic study of 59 cases. Am J Surg Pathol. 2014;38(10):1330–9.

    Article  PubMed  Google Scholar 

  263. Ly A, et al. Atypical leiomyomas of the uterus: a clinicopathologic study of 51 cases. Am J Surg Pathol. 2013;37(5):643–9.

    Article  PubMed  Google Scholar 

  264. Miettinen M, et al. Fumarase-deficient uterine leiomyomas: an immunohistochemical, molecular genetic, and clinicopathologic study of 86 cases. Am J Surg Pathol. 2016;40(12):1661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Tomlinson IP, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.

    Article  CAS  PubMed  Google Scholar 

  266. Lehtonen HJ, et al. Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet. 2006;43(6):523–6.

    Article  CAS  PubMed  Google Scholar 

  267. Joseph NM, et al. Morphology and immunohistochemistry for 2SC and FH aid in detection of fumarate hydratase gene aberrations in uterine leiomyomas from young patients. Am J Surg Pathol. 2015;39(11):1529–39.

    Article  PubMed  Google Scholar 

  268. Bennett JA, et al. Leiomyoma with bizarre nuclei: a morphological, immunohistochemical and molecular analysis of 31 cases. Mod Pathol. 2017;30(10):1476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Reyes C, et al. Uterine smooth muscle tumors with features suggesting fumarate hydratase aberration: detailed morphologic analysis and correlation with S-(2-succino)-cysteine immunohistochemistry. Mod Pathol. 2014;27(7):1020–7.

    Article  CAS  PubMed  Google Scholar 

  270. Sanz-Ortega J, et al. Morphologic and molecular characteristics of uterine leiomyomas in hereditary leiomyomatosis and renal cancer (HLRCC) syndrome. Am J Surg Pathol. 2013;37(1):74–80.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Harrison WJ, et al. Fumarate hydratase-deficient uterine leiomyomas occur in both the syndromic and sporadic settings. Am J Surg Pathol. 2016;40(5):599–607.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Alsolami S, et al. Current morphologic criteria perform poorly in identifying hereditary leiomyomatosis and renal cell carcinoma syndrome-associated uterine leiomyomas. Int J Gynecol Pathol. 2014;33(6):560–7.

    Article  PubMed  Google Scholar 

  273. Zhang Q, et al. Fumarate hydratase mutations and alterations in leiomyoma with bizarre nuclei. Int J Gynecol Pathol. 2018;37(5):421–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Lehtonen R, et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol. 2004;164(1):17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Piscuoglio S, et al. Uterine adenosarcomas are mesenchymal neoplasms. J Pathol. 2016;238(3):381–8.

    Article  CAS  PubMed  Google Scholar 

  276. Zaloudek CJ, Norris HJ. Adenofibroma and adenosarcoma of the uterus: a clinicopathologic study of 35 cases. Cancer. 1981;48(2):354–66.

    Article  CAS  PubMed  Google Scholar 

  277. Gallardo A, Prat J. Mullerian adenosarcoma: a clinicopathologic and immunohistochemical study of 55 cases challenging the existence of adenofibroma. Am J Surg Pathol. 2009;33(2):278–88.

    Article  PubMed  Google Scholar 

  278. Clement PB, Scully RE. Mullerian adenosarcoma of the uterus: a clinicopathologic analysis of 100 cases with a review of the literature. Hum Pathol. 1990;21(4):363–81.

    Article  CAS  PubMed  Google Scholar 

  279. McCluggage WG. Mullerian adenosarcoma of the female genital tract. Adv Anat Pathol. 2010;17(2):122–9.

    Article  PubMed  Google Scholar 

  280. Carroll A, et al. Uterine adenosarcoma: an analysis on management, outcomes, and risk factors for recurrence. Gynecol Oncol. 2014;135(3):455–61.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Nathenson MJ, et al. Uterine adenosarcoma: a review. Curr Oncol Rep. 2016;18(11):68.

    Article  PubMed  CAS  Google Scholar 

  282. Seagle BL, et al. Survival of women with Mullerian adenosarcoma: a National Cancer Data Base study. Gynecol Oncol. 2016;143(3):636–41.

    Article  PubMed  Google Scholar 

  283. Verschraegen CF, et al. Clinicopathologic analysis of mullerian adenosarcoma: the M.D. Anderson Cancer Center experience. Oncol Rep. 1998;5(4):939–44.

    CAS  PubMed  Google Scholar 

  284. Arend R, et al. Long-term outcome and natural history of uterine adenosarcomas. Gynecol Oncol. 2010;119(2):305–8.

    Article  PubMed  Google Scholar 

  285. Clement PB. Mullerian adenosarcomas of the uterus with sarcomatous overgrowth. A clinicopathological analysis of 10 cases. Am J Surg Pathol. 1989;13(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  286. Clement PB, Oliva E, Young RH. Mullerian adenosarcoma of the uterine corpus associated with tamoxifen therapy: a report of six cases and a review of tamoxifen-associated endometrial lesions. Int J Gynecol Pathol. 1996;15(3):222–9.

    Article  CAS  PubMed  Google Scholar 

  287. Howitt BE, Quade BJ, Nucci MR. Uterine polyps with features overlapping with those of Mullerian adenosarcoma: a clinicopathologic analysis of 29 cases emphasizing their likely benign nature. Am J Surg Pathol. 2015;39(1):116–26.

    Article  PubMed  Google Scholar 

  288. Clement PB, Scully RE. Mullerian adenosarcomas of the uterus with sex cord-like elements. A clinicopathologic analysis of eight cases. Am J Clin Pathol. 1989;91(6):664–72.

    Article  CAS  PubMed  Google Scholar 

  289. Stolnicu S, et al. The impact on survival of an extensive sex cord-like component in Mullerian adenosarcomas: a study comprising 6 cases. Int J Gynecol Pathol. 2016;35(2):147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Amant F, et al. Immunohistochemical expression of CD10 antigen in uterine adenosarcoma. Int J Gynecol Cancer. 2004;14(6):1118–21.

    Article  CAS  PubMed  Google Scholar 

  291. Mikami Y, et al. Expression of CD10 in malignant mullerian mixed tumors and adenosarcomas: an immunohistochemical study. Mod Pathol. 2002;15(9):923–30.

    Article  PubMed  Google Scholar 

  292. Amant F, et al. Immunohistochemical determination of hormone receptors in uterine adenosarcomas. Gynecol Oncol. 2003;88(3):463–4.

    Article  PubMed  Google Scholar 

  293. Amant F, et al. Immunohistochemical determination of estrogen and progesterone receptor positivity in uterine adenosarcoma. Gynecol Oncol. 2004;93(3):680–5.

    Article  CAS  PubMed  Google Scholar 

  294. Soslow RA, Ali A, Oliva E. Mullerian adenosarcomas: an immunophenotypic analysis of 35 cases. Am J Surg Pathol. 2008;32(7):1013–21.

    Article  PubMed  Google Scholar 

  295. Hodgson A, et al. High-grade Mullerian adenosarcoma: genomic and clinicopathologic characterization of a distinct neoplasm with prevalent TP53 pathway alterations and aggressive behavior. Am J Surg Pathol. 2017;41(11):1513–22.

    Article  PubMed  Google Scholar 

  296. Swisher EM, et al. The expression of epidermal growth factor receptor, HER-2/Neu, p53, and Ki-67 antigen in uterine malignant mixed mesodermal tumors and adenosarcoma. Gynecol Oncol. 1996;60(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  297. Blom R, Guerrieri C. Adenosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53 and mdm-2 analysis of 11 cases. Int J Gynecol Cancer. 1999;9(1):37–43.

    Article  PubMed  Google Scholar 

  298. Howitt BE, et al. Targeted genomic analysis of Mullerian adenosarcoma. J Pathol. 2015;235(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  299. Howitt BE, et al. Involvement of Chromosome 8 in Mullerian adenosarcoma. Int J Gynecol Pathol. 2017;36(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  300. Tai LH, Tavassoli FA. Endometrial polyps with atypical (bizarre) stromal cells. Am J Surg Pathol. 2002;26(4):505–9.

    Article  PubMed  Google Scholar 

  301. Krivak TC, et al. Uterine adenosarcoma with sarcomatous overgrowth versus uterine carcinosarcoma: comparison of treatment and survival. Gynecol Oncol. 2001;83(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  302. Kaku T, et al. Adenosarcoma of the uterus: a gynecologic oncology group clinicopathologic study of 31 cases. Int J Gynecol Pathol. 1992;11(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  303. Tanner EJ, et al. Management of uterine adenosarcomas with and without sarcomatous overgrowth. Gynecol Oncol. 2013;129(1):140–4.

    Article  PubMed  Google Scholar 

  304. Longacre TA, et al. Atypical polypoid adenomyofibromas (atypical polypoid adenomyomas) of the uterus. A clinicopathologic study of 55 cases. Am J Surg Pathol. 1996;20(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  305. Nemejcova K, et al. Atypical polypoid adenomyoma of the uterus: an immunohistochemical and molecular study of 21 cases. Am J Surg Pathol. 2015;39(8):1148–55.

    Article  PubMed  Google Scholar 

  306. McCluggage WG. A practical approach to the diagnosis of mixed epithelial and mesenchymal tumours of the uterus. Mod Pathol. 2016;29(Suppl 1):S78–91.

    Article  CAS  PubMed  Google Scholar 

  307. Matsumoto T, et al. Clinical management of atypical polypoid adenomyoma of the uterus. A clinicopathological review of 29 cases. Gynecol Oncol. 2013;129(1):54–7.

    Article  PubMed  Google Scholar 

  308. Soslow RA, et al. Atypical polypoid adenomyofibroma (APA) versus well-differentiated endometrial carcinoma with prominent stromal matrix: an immunohistochemical study. Int J Gynecol Pathol. 1996;15(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  309. Vang R, Kempson RL. Perivascular epithelioid cell tumor (‘PEComa’) of the uterus: a subset of HMB-45-positive epithelioid mesenchymal neoplasms with an uncertain relationship to pure smooth muscle tumors. Am J Surg Pathol. 2002;26(1):1–13.

    Article  PubMed  Google Scholar 

  310. Conlon N, Soslow RA, Murali R. Perivascular epithelioid tumours (PEComas) of the gynaecological tract. J Clin Pathol. 2015;68(6):418–26.

    Article  PubMed  Google Scholar 

  311. Schoolmeester JK, et al. TFE3 translocation-associated perivascular epithelioid cell neoplasm (PEComa) of the gynecologic tract: morphology, immunophenotype, differential diagnosis. Am J Surg Pathol. 2015;39(3):394–404.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Kenerson H, et al. Activation of the mTOR pathway in sporadic angiomyolipomas and other perivascular epithelioid cell neoplasms. Hum Pathol. 2007;38(9):1361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Shen Q, et al. Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features. Virchows Arch. 2014;465(5):607–13.

    Article  CAS  PubMed  Google Scholar 

  314. Liu F, et al. Malignant perivascular epithelioid cell tumor (PEComa) of cervix with TFE3 gene rearrangement: a case report. Int J Clin Exp Pathol. 2014;7(9):6409–14.

    PubMed  PubMed Central  Google Scholar 

  315. Agaram NP, et al. Dichotomy of genetic abnormalities in PEComas with therapeutic implications. Am J Surg Pathol. 2015;39(6):813–25.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Malinowska I, et al. Perivascular epithelioid cell tumors (PEComas) harboring TFE3 gene rearrangements lack the TSC2 alterations characteristic of conventional PEComas: further evidence for a biological distinction. Am J Surg Pathol. 2012;36(5):783–4.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Argani P, et al. Melanotic Xp11 translocation renal cancers: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am J Surg Pathol. 2009;33(4):609–19.

    Article  PubMed  Google Scholar 

  318. Rao Q, et al. PSF/SFPQ is a very common gene fusion partner in TFE3 rearrangement-associated perivascular epithelioid cell tumors (PEComas) and melanotic Xp11 translocation renal cancers: clinicopathologic, immunohistochemical, and molecular characteristics suggesting classification as a distinct entity. Am J Surg Pathol. 2015;39(9):1181–96.

    Article  PubMed  Google Scholar 

  319. Tanaka M, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol. 2009;33(9):1416–20.

    Article  PubMed  Google Scholar 

  320. Pan CC, et al. Comparative genomic hybridization study of perivascular epithelioid cell tumor: molecular genetic evidence of perivascular epithelioid cell tumor as a distinctive neoplasm. Hum Pathol. 2006;37(5):606–12.

    Article  CAS  PubMed  Google Scholar 

  321. Silva EG, et al. A uterine leiomyosarcoma that became positive for HMB45 in the metastasis. Ann Diagn Pathol. 2005;9(1):43–5.

    Article  PubMed  Google Scholar 

  322. Silva EG, et al. Uterine leiomyosarcoma with clear cell areas. Int J Gynecol Pathol. 1995;14(2):174–8.

    Article  CAS  PubMed  Google Scholar 

  323. Simpson KW, Albores-Saavedra J. HMB-45 reactivity in conventional uterine leiomyosarcomas. Am J Surg Pathol. 2007;31(1):95–8.

    Article  PubMed  Google Scholar 

  324. Ruco LP, et al. Epithelioid lymphangioleiomyomatosis-like tumour of the uterus in a patient without tuberous sclerosis: a lesion mimicking epithelioid leiomyosarcoma. Histopathology. 1998;33(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  325. Michal M, Zamecnik M. Hyalinized uterine mesenchymal neoplasms with HMB-45-positive epithelioid cells: epithelioid leiomyomas or angiomyolipomas? Report of four cases. Int J Surg Pathol. 2000;8(4):323–8.

    Article  PubMed  Google Scholar 

  326. Kwon BS, et al. Two cases of perivascular epithelioid cell tumor of the uterus: clinical, radiological and pathological diagnostic challenge. Eur J Med Res. 2017;22(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Mills AM, Longacre TA. Smooth muscle tumors of the female genital tract. Surg Pathol Clin. 2009;2(4):625–77.

    Article  PubMed  Google Scholar 

  328. Fadare O. Uterine perivascular epithelioid cell tumors (PEComas) and epithelioid smooth muscle neoplasms. Arch Pathol Lab Med. 2008;132(11):1714.

    PubMed  Google Scholar 

  329. Fadare O. Perivascular epithelioid cell tumors (PEComas) and smooth muscle tumors of the uterus. Am J Surg Pathol. 2007;31(9):1454–5. author reply 1455–6

    Article  PubMed  Google Scholar 

  330. Schoolmeester JK, et al. Alveolar soft part sarcoma of the female genital tract: a morphologic, immunohistochemical, and molecular cytogenetic study of 10 cases with emphasis on its distinction from morphologic mimics. Am J Surg Pathol. 2017;41(5):622–32.

    Article  PubMed  Google Scholar 

  331. Folpe AL, et al. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29(12):1558–75.

    Article  PubMed  Google Scholar 

  332. Wagner AJ, et al. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J Clin Oncol. 2010;28(5):835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Starbuck KD, et al. Treatment of advanced malignant uterine perivascular epithelioid cell tumor with mTOR inhibitors: single-institution experience and review of the literature. Anticancer Res. 2016;36(11):6161–4.

    Article  CAS  PubMed  Google Scholar 

  334. Gao F, et al. Combination targeted therapy of VEGFR inhibitor, sorafenib, with an mTOR inhibitor, sirolimus induced a remarkable response of rapid progressive uterine PEComa. Cancer Biol Ther. 2016;17(6):595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Dickson MA, et al. Extrarenal perivascular epithelioid cell tumors (PEComas) respond to mTOR inhibition: clinical and molecular correlates. Int J Cancer. 2013;132(7):1711–7.

    Article  CAS  PubMed  Google Scholar 

  336. Ghosh I, et al. Metastatic perivascular epithelioid cell tumor responding to mammalian target of rapamycin inhibition. Indian J Med Paediatr Oncol. 2014;35(1):99–102.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Benson C, et al. A retrospective study of patients with malignant PEComa receiving treatment with sirolimus or temsirolimus: the Royal Marsden Hospital experience. Anticancer Res. 2014;34(7):3663–8.

    PubMed  Google Scholar 

  338. Coffin CM, et al. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19(8):859–72.

    Article  CAS  PubMed  Google Scholar 

  339. Rabban JT, et al. Inflammatory myofibroblastic tumor of the uterus: a clinicopathologic study of 6 cases emphasizing distinction from aggressive mesenchymal tumors. Am J Surg Pathol. 2005;29(10):1348–55.

    Article  PubMed  Google Scholar 

  340. Bennett JA, et al. Inflammatory myofibroblastic tumor of the uterus: a clinicopathological, immunohistochemical, and molecular analysis of 13 cases highlighting their broad morphologic spectrum. Mod Pathol. 2017;30(10):1489–503.

    Article  CAS  PubMed  Google Scholar 

  341. Fuehrer NE, et al. ALK-1 protein expression and ALK gene rearrangements aid in the diagnosis of inflammatory myofibroblastic tumors of the female genital tract. Arch Pathol Lab Med. 2012;136(6):623–6.

    Article  PubMed  Google Scholar 

  342. Yamamoto H, et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology. 2016;69(1):72–83.

    Article  PubMed  Google Scholar 

  343. Cessna MH, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15(9):931–8.

    Article  PubMed  Google Scholar 

  344. Takahashi A, et al. Anaplastic lymphoma kinase-negative uterine inflammatory myofibroblastic tumor containing the ETV6-NTRK3 fusion gene: a case report. J Int Med Res. 2018;46:3498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Alassiri AH, et al. ETV6-NTRK3 is expressed in a subset of ALK-negative inflammatory myofibroblastic tumors. Am J Surg Pathol. 2016;40(8):1051–61.

    Article  PubMed  Google Scholar 

  346. Antonescu CR, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol. 2015;39(7):957–67.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Hornick JL, et al. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod Pathol. 2015;28(5):732–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Subbiah V, et al. STUMP un“stumped”: anti-tumor response to anaplastic lymphoma kinase (ALK) inhibitor based targeted therapy in uterine inflammatory myofibroblastic tumor with myxoid features harboring DCTN1-ALK fusion. J Hematol Oncol. 2015;8:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Marino-Enriquez A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35(1):135–44.

    Article  PubMed  Google Scholar 

  350. Butrynski JE, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Mosse YP, et al. Targeting ALK with Crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a children’s Oncology Group study. J Clin Oncol. 2017;35(28):3215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Schwartz EJ, Longacre TA. Adenomatoid tumors of the female and male genital tracts express WT1. Int J Gynecol Pathol. 2004;23(2):123–8.

    Article  PubMed  Google Scholar 

  353. Sangoi AR, et al. Adenomatoid tumors of the female and male genital tracts: a clinicopathological and immunohistochemical study of 44 cases. Mod Pathol. 2009;22(9):1228–35.

    Article  CAS  PubMed  Google Scholar 

  354. Ditto A, et al. Embryonal rhabdomyosarcoma of the uterine cervix in adults: a case report and literature review. J Low Genit Tract Dis. 2013;17(4):e12–7.

    Article  PubMed  Google Scholar 

  355. Ferguson SE, et al. Clinicopathologic features of rhabdomyosarcoma of gynecologic origin in adults. Am J Surg Pathol. 2007;31(3):382–9.

    Article  PubMed  Google Scholar 

  356. Daya DA, Scully RE. Sarcoma botryoides of the uterine cervix in young women: a clinicopathological study of 13 cases. Gynecol Oncol. 1988;29(3):290–304.

    Article  CAS  PubMed  Google Scholar 

  357. Ghaemmaghami F, Karimi Zarchi M, Ghasemi M. Lower genital tract rhabdomyosarcoma: case series and literature review. Arch Gynecol Obstet. 2008;278(1):65–9.

    Article  PubMed  Google Scholar 

  358. Li RF, et al. Embryonal rhabdomyosarcoma (botryoid type) of the uterine corpus and cervix in adult women: report of a case series and review of the literature. Am J Surg Pathol. 2013;37(3):344–55.

    Article  PubMed  Google Scholar 

  359. Dehner LP, Jarzembowski JA, Hill DA. Embryonal rhabdomyosarcoma of the uterine cervix: a report of 14 cases and a discussion of its unusual clinicopathological associations. Mod Pathol. 2012;25(4):602–14.

    Article  PubMed  Google Scholar 

  360. de Kock L, et al. Sequencing of DICER1 in sarcomas identifies biallelic somatic DICER1 mutations in an adult-onset embryonal rhabdomyosarcoma. Br J Cancer. 2017;116(12):1621–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Heravi-Moussavi A, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234–42.

    Article  CAS  PubMed  Google Scholar 

  362. Foulkes WD, et al. Extending the phenotypes associated with DICER1 mutations. Hum Mutat. 2011;32(12):1381–4.

    Article  CAS  PubMed  Google Scholar 

  363. Schultz KAP, et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 2018;24(10):2251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Doros L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr Blood Cancer. 2012;59(3):558–60.

    Article  PubMed  Google Scholar 

  365. Kodet R, et al. Childhood rhabdomyosarcoma with anaplastic (pleomorphic) features. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol. 1993;17(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  366. Fukunaga M. Pure alveolar rhabdomyosarcoma of the uterine corpus. Pathol Int. 2011;61(6):377–81.

    Article  PubMed  Google Scholar 

  367. Fadare O, et al. Pleomorphic rhabdomyosarcoma of the uterine corpus: a clinicopathologic study of 4 cases and a review of the literature. Int J Gynecol Pathol. 2010;29(2):122–34.

    Article  PubMed  Google Scholar 

  368. Rivasi F, et al. Alveolar rhabdomyosarcoma of the uterine cervix. A case report confirmed by FKHR break-apart rearrangement using a fluorescence in situ hybridization probe on paraffin-embedded tissues. Int J Gynecol Pathol. 2008;27(3):442–6.

    Article  PubMed  Google Scholar 

  369. Ordi J, Stamatakos MD, Tavassoli FA. Pure pleomorphic rhabdomyosarcomas of the uterus. Int J Gynecol Pathol. 1997;16(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  370. Sorensen PH, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol. 2002;20(11):2672–9.

    Article  CAS  PubMed  Google Scholar 

  371. Yang EJ, et al. Solitary fibrous tumour of the female genital tract: a clinicopathological analysis of 25 cases. Histopathology. 2018;72(5):749–59.

    Article  PubMed  Google Scholar 

  372. Strickland KC, et al. Solitary fibrous tumor of the uterus presenting with lung metastases: a case report. Int J Gynecol Pathol. 2016;35(1):25–9.

    Article  PubMed  Google Scholar 

  373. Schammel DP, Tavassoli FA. Uterine angiosarcomas: a morphologic and immunohistochemical study of four cases. Am J Surg Pathol. 1998;22(2):246–50.

    Article  CAS  PubMed  Google Scholar 

  374. Cardinale L, et al. Angiosarcoma of the uterus: report of 2 new cases with deviant clinicopathologic features and review of the literature. Ann Diagn Pathol. 2008;12(3):217–21.

    Article  PubMed  Google Scholar 

  375. Harris NL, Scully RE. Malignant lymphoma and granulocytic sarcoma of the uterus and vagina. A clinicopathologic analysis of 27 cases. Cancer. 1984;53(11):2530–45.

    Article  CAS  PubMed  Google Scholar 

  376. Hirschowitz L, et al. Intravascular adenomyomatosis: expanding the morphologic spectrum of intravascular leiomyomatosis. Am J Surg Pathol. 2013;37(9):1395–400.

    Article  PubMed  Google Scholar 

  377. Meenakshi M, McCluggage WG. Vascular involvement in adenomyosis: report of a large series of a common phenomenon with observations on the pathogenesis of adenomyosis. Int J Gynecol Pathol. 2010;29(2):117–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa R. Nucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howitt, B.E., Nucci, M.R. (2019). Uterine Mesenchymal Lesions. In: Zheng, W., Fadare, O., Quick, C., Shen, D., Guo, D. (eds) Gynecologic and Obstetric Pathology, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-13-3019-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3019-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3018-6

  • Online ISBN: 978-981-13-3019-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics