Skip to main content

On Convergence Speed of Parallel Variants of BiCGSTAB for Solving Linear Equations

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 946))

Included in the following conference series:

  • 1519 Accesses

Abstract

A number of hybrid Bi-Conjugate Gradient (Bi-CG) methods such as the Bi-CG STABilized (BiCGSTAB) method have been developed for solving linear equations. BiCGSTAB has been most often used for efficiently solving the linear equations, but we have sometimes seen the convergence behavior with a long stagnation phase. In such cases, it is important to have Bi-CG coefficients that are as accurate as possible, and the stabilization strategy for improving the accuracy of the Bi-CG coefficients has been proposed. In present petascale high-performance computing hardware, the main bottleneck of Krylov subspace methods for efficient parallelization is the inner products which require a global reduction. The parallel variants of BiCGSTAB such as communication avoiding and pipelined BiCGSTAB reducing the number of global communication phases and hiding the communication latency have been proposed. However, the numerical stability, specifically, the convergence speed of the parallel variants of BiCGSTAB has not previously been clarified on problems with situations where the convergence is slow (strongly affected by rounding errors). In this paper, therefore, we examine the convergence speed between the standard BiCGSTAB and the parallel variants, and the effectiveness of the stabilization strategy by numerical experiments on the problems where the convergence has a long stagnation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, K., Sleijpen, G.L.G.: Solving linear equations with a stabilized GPBiCG method. Appl. Numer. Math. 67, 4–16 (2013)

    Article  MathSciNet  Google Scholar 

  2. Carson, E.: Communication-avoiding Krylov subspace methods in theory and practice. Ph.D. thesis, U.C. Berkeley, EECS (2015)

    Google Scholar 

  3. Carson, E., Demmel, J.: A residual replacement strategy for improving the maximum attainable accuracy of s-step Krylov subspace methods. SIAM J. Matrix Anal. Appl. 35, 22–43 (2014)

    Article  MathSciNet  Google Scholar 

  4. Carson, E., Knight, N., Demmel, J.: Avoiding communication in nonsymmetric Lanczos-based Krylov subspace methods. SIAM J. Sci. Comput. 35, S42–S61 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chronopoulos, A.T.: \(s\)-step iterative methods for (non)symmetric (in)definite linear systems. SIAM J. Numer. Anal. 28, 1776–1789 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chronopoulos, A.T., Gear, C.W.: \(s\)-step iterative methods for symmetric linear systems. J. Comput. Math. 25, 153–168 (1989)

    Article  MathSciNet  Google Scholar 

  7. Chronopoulos, A.T., Swanson, C.D.: Parallel iterative \(s\)-step methods for unsymmetric linear systems. Parallel Comput. 22, 623–641 (1996)

    Article  MathSciNet  Google Scholar 

  8. Cools, S.: Numerical stability analysis of the class of communication hiding pipelined conjugate gradient methods. arXiv:1804.02962v1 [cs.NA] (2018)

  9. Cools, S., Vanroose, W.: The communication-hiding pipelined BiCGStab method for the parallel solution of large unsymmetric linear systems. Parallel Comput. 65, 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cools, S., Vanroose, W.: Numerically stable variants of the communication-hiding pipelined conjugate gradients algorithm for parallel solution of large scale symmetric linear systems. arXiv:1706.05988v1 [cs.NA] (2017)

  11. Cools, S., Yetkin, E.F., Agullo, E., Giraud, L., Vanroose, W.: Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined conjugate gradient method. SIAM J. Matrix Anal. Appl. 39, 426–450 (2018)

    Article  MathSciNet  Google Scholar 

  12. Demmel, J.W., Heath, M.T., van der Vorst, H.A.: Parallel numerical linear algebra. Acta Numerica 2, 111–197 (1993)

    Article  MathSciNet  Google Scholar 

  13. Erhel, J.: A parallel GMRES version for general sparse matrices. ETNA 3, 160–176 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 506, pp. 73–89. Springer, Heidelberg (1976). https://doi.org/10.1007/BFb0080116

    Chapter  Google Scholar 

  15. Ghysels, P., Ashby, T.J., Meerbergen, K., Vanroose, W.: Hiding global communication latency in the GMRES algorithm on massively parallel machines. SIAM J. Sci. Comput. 35, C48–C71 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ghysels, P., Vanroose, W.: Hiding global synchronization latency in the preconditioned conjugate gradient algorithm. Parallel Comput. 40, 224–238 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gutknecht, M.H.: Variants of BiCGStab for matrices with complex spectrum. SIAM J. Sci. Comput. 14, 1020–1033 (1993)

    Article  MathSciNet  Google Scholar 

  18. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comput. 14, 461–469 (1993)

    Article  MathSciNet  Google Scholar 

  19. Sleijpen, G.L.G., Fokkema, D.R.: BiCGstab(\(l\)) for solving linear equations involving unsymmetric matrices with complex spectrum. ETNA 1, 11–31 (1993)

    MATH  Google Scholar 

  20. Sleijpen, G.L.G., Sonneveld, P., van Gijzen, M.B.: Bi-CGSTAB as induced dimension reduction method. Appl. Numer. Math. 60, 1100–1114 (2010)

    Article  MathSciNet  Google Scholar 

  21. Sleijpen, G.L.G., van der Vorst, H.A.: Maintaining convergence properties of BiCGstab methods in finite precision arithmetic. Numer. Algorithms 10, 203–223 (1995)

    Article  MathSciNet  Google Scholar 

  22. Sleijpen, G.L.G., van der Vorst, H.A.: An overview of approaches for the stable computation of hybrid BiCG methods. Appl. Numer. Math. 19, 235–254 (1995)

    Article  MathSciNet  Google Scholar 

  23. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Comput. 10, 36–52 (1989)

    Article  MathSciNet  Google Scholar 

  24. Sturler, E.D.: A parallel variant of GMRES(m). In: Proceedings of the 13th IMACS World Congress on Computational and Applied Mathematics, IMACS, vol. 9. Criterion Press (1991)

    Google Scholar 

  25. Sturler, E.D., van der Vorst, H.A.: Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers. Appl. Numer. Math. 18, 441–459 (1995)

    Article  Google Scholar 

  26. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  Google Scholar 

  27. Yang, L.T.: The improved CGS method for large and sparse linear systems on bulk synchronous parallel architectures. In: Proceedings of the Fifth International Conference on Algorithm and Architectures for Parallel Processing, pp. 232–237. IEEE (2002)

    Google Scholar 

  28. Yang, L.T., Brent, R.P.: The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures. In: Proceedings of the Fifth International Conference on Algorithm and Architectures for Parallel Processing, pp. 324–328. IEEE (2002)

    Google Scholar 

  29. Yang, L.T., Brent, R.P.: The improved parallel BiCG method for large and sparse unsymmetric linear systems on distributed memory architectures. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium, IPDPD, pp. 349–360 (2003)

    Google Scholar 

  30. Zhang, S.L.: GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyoshi Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abe, K. (2018). On Convergence Speed of Parallel Variants of BiCGSTAB for Solving Linear Equations. In: Li, L., Hasegawa, K., Tanaka, S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2018. Communications in Computer and Information Science, vol 946. Springer, Singapore. https://doi.org/10.1007/978-981-13-2853-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2853-4_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2852-7

  • Online ISBN: 978-981-13-2853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics