Skip to main content

Recent Progress in Simulations of 3D Vortex Sheets with Surface Tension

  • Chapter
  • First Online:
Mathematical Insights into Advanced Computer Graphics Techniques (MEIS 2016, MEIS 2017)

Abstract

Numerical simulations of vortex sheets have a long history. The major advantage of the vortex sheet model lies in the efficiency of its boundary integral formulation, which allows us to avoid expensive computations of volumetric equations in some important problems. Although some researchers in computer graphics have exploited this benefit, there seems to be ample room for further improvements to their methods in relation to new results achieved in the applied mathematics community. On the other hand, applied mathematicians also could gain insight into flexible treatment of moving surfaces, which are very common in the current CG community. In this paper, we give an overview of recent progress in numerical simulations of the motion of three-dimensional vortex sheets with surface tension and discuss open problems that interests researchers in both communities referring to important papers from graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrose DM, Masmoudi N (2007) Well-posedness of 3D vortex sheets with surface tension. Commun Math Sci 5(2):391–430

    Article  MathSciNet  Google Scholar 

  2. Ambrose DM, Siegel M (2012) A non-stiff boundary integral method for 3D porous media flow with surface tension. Math Comput Simul 82(6):968–983

    Article  MathSciNet  Google Scholar 

  3. Ambrose DM, Siegel M, Tlupova S (2013) A small-scale decomposition for 3D boundary integral computations with surface tension. J Comput Phys 247:168–191

    Article  MathSciNet  Google Scholar 

  4. Anderson CR (1986) A method of local corrections for computing the velocity field due to a distribution of vortex blobs. J Comput Phys 62(1):111–123

    Article  MathSciNet  Google Scholar 

  5. Beale JT, Majda A (1985) High order accurate vortex methods with explicit velocity kernels. J Comput Phys 58(2):188–208

    Article  Google Scholar 

  6. Brochu T, Bridrson R (2009) Robust topological operations for dynamic explicit surfaces. SIAM J Sci Comput 31(4):2472–2493

    Article  MathSciNet  Google Scholar 

  7. Brochu T, Keeler T, Bridrson R (2012) Linear-time smoke animation with vortex sheets. Proc Symp Comput Anim 87–95

    Google Scholar 

  8. Caflisch RE, Li X-F (1992) Lagrangian theory for 3D vortex sheets with axial or helical symmetry. Transp Theory Stat Phys 21:559

    Article  Google Scholar 

  9. Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. J Comput Phys 155(2):468–498

    Article  MathSciNet  Google Scholar 

  10. Chorin AJ, Bernard PS (1973) Discretization of a vortex sheet, with an example of roll-up. J Comput Phys 13(3):423–429

    Article  Google Scholar 

  11. Da F, Batty C, Grinspun E (2014) Multimaterial mesh-based surface tracking. ACM Trans Graph 33(4):112

    Article  Google Scholar 

  12. Da F, Batty C, Wojtan C, Grinspun E (2015) Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and forms. ACM Trans Graph 34(4):149

    Article  Google Scholar 

  13. Da F, Hahn D, Batty C, Wojtan C, Grinspun E (2016) Surface-only liquids. ACM Trans Graph 35(4):78

    Article  Google Scholar 

  14. Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21(3):736–744

    Article  Google Scholar 

  15. Epstein CL, Gage M (1987) The curve shortening flow, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986). Math Sci Res Inst Publ 7:15–59. Springer

    Google Scholar 

  16. Hou TY, Lowengrub JS, Shelly MJ (1994) Removing the stiffness from interfacial flows with surface tension. J Comput Phys 114(2):312–338

    Article  MathSciNet  Google Scholar 

  17. Hou TY, Lowengrub JS, Shelly MJ (1998) The long-time motion of vortex sheets with surface tension. Phys Fluids 9:1933

    Article  MathSciNet  Google Scholar 

  18. Kim D, Song O-Y, Ko H-S (2009) Stretching and wiggling liquids. ACM Trans Graph 28(5):120

    Google Scholar 

  19. Lundgren TS, Mansour NN (1988) Oscillations of drops in zero gravity with weak viscous effects. J Fluid Mech 194:479–510

    Article  MathSciNet  Google Scholar 

  20. Moore DW (1979) The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc R Soc Lond A 365:105–119

    Article  MathSciNet  Google Scholar 

  21. Nie Q (2001) The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows. J Comput Phys 174(1):438–459

    Article  MathSciNet  Google Scholar 

  22. Nitsche M, Steen PH (2004) Numerical simulations of inviscid capillary pinchoff. J Comput Phys 200(1):299–324

    Article  MathSciNet  Google Scholar 

  23. Pfaff T, Thuerey N, Gross M (2012) Lagrangian vortex sheets for animating fluids. ACM Trans Graph 31(4):112

    Article  Google Scholar 

  24. Saffman PG (1995) Vortex dynamics. Cambridge University Press, UK

    MATH  Google Scholar 

  25. Stam J (1999) Stable fluids. SIGGRAPH 99 Conference Proceedings. Annual conference series, 121–128

    Google Scholar 

  26. Zhang X, Bridson R (2014) A PPPM fast summation method for fluids and beyond. ACM Trans Graph 33(6):206

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Koga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koga, K., Funakoshi, M. (2019). Recent Progress in Simulations of 3D Vortex Sheets with Surface Tension. In: Dobashi, Y., Kaji, S., Iwasaki, K. (eds) Mathematical Insights into Advanced Computer Graphics Techniques. MEIS MEIS 2016 2017. Mathematics for Industry, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-13-2850-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2850-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2849-7

  • Online ISBN: 978-981-13-2850-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics