Skip to main content

The Biology and Ecology of Leafhopper Transmission of Phytoplasmas

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - II

Abstract

Leafhoppers (Hemiptera: Cicadellidae) have long been known to transmit a number of plant pathogens, although the elucidation of the vector-host plant-pathogen relationships are far from well-defined and irrefutable. Due to their small size, the phloem-limited bacterial pathogens in the taxon ‘Candidatus Phytoplasma’ were only visualized some 50 years ago. They are difficult to culture, hence their relationships with both their insect vectors and host plants present an ongoing scientific struggle. Precise phylogenetic knowledge of the vector and bacteria may eventually allow the prediction of potential vector-phytoplasma associations. As leafhoppers are poikilothermic, abiotic factors figure strongly in the development of both the insect host and the bacteria within, which in turn affects pathogen transmission. As a group, their life cycle is varied from univoltine to multivoltine and monophagous to polyphagous, and their phytoplasma-associations are equally varied. Furthermore, adult leafhoppers are strong flying insects and some have been documented to move thousands of kilometers. When aided by human conveyance, both the vectors and the pathogens have been transported among continents. In this chapter all these interactions are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alma A, Bosco D, Danielli A, Bertaccini A, Vibio M, Arzone A (1997) Identification of phytoplasmas in eggs, nymphs of Scaphoideus titanus Ball reared on healthy plants. Insect Molecular Biology 2, 115–121.

    Google Scholar 

  • Alma A, Daffonchio D, Gonella E, Raddadi N (2010) Microbial symbionts of Auchenorrhyncha transmitting phytoplasmas: a resource for symbiotic control of phytoplasmoses. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P, CABI, Wallingford, United Kingdom, 227–292 pp.

    Google Scholar 

  • Altieri MA, Ponti L, Nicholls CI (2005) Manipulating vineyard bioiversity for improved insect pest management: case studies from northern California. International Journal of Biodiversity Science Management 1, 1–13.

    Google Scholar 

  • Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied Environmental Microbiology 73, 4001–4010.

    Google Scholar 

  • Arocha Rosete YA, Jones P (2010) Phytoplasma diseases of the Gramineae. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 170–187 pp.

    Google Scholar 

  • Arocha Rosete Y, Kent P, Agrawal V, Hunt D, Hamilton A, Bertaccini A, Scott J, Crosby W, Michelutte R (2011) Identification of Graminella nigrifrons as a potential vector for phytoplasmas affecting Prunus and Pyrus species in Canada. Canadian Journal of Plant Pathology 33, 465–474.

    Google Scholar 

  • Asghar U, Faheem Malik M, Anwar F, Javed A, Raza A (2015) DNA extraction from insects by using different techniques: a review. Advances in Entomology 3, 132–138.

    Google Scholar 

  • Backus EA (1985) Anatomical and sensory mechanisms of leafhopper and planthopper feeding behavior. In: The Leafhoppers and Planthoppers. Eds Nault LA, Rodriguez JG. Wiley, New York, United States of America, 163–194 pp.

    Google Scholar 

  • Backus EA (1988) Sensory systems and behaviours which mediate hemipteran plant-feeding: a taxonomic overview. Journal of Insect Physiology 34, 151–165.

    Google Scholar 

  • Beanland L, Hoy CW, Miller SA, Nault LR (2000) Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Annals of Entomological Society of America 93, 271–276.

    Google Scholar 

  • Beanland L, Noble R, Wolf TK (2006) Spatial and temporal distribution of north American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environmental Entomology 35, 332–344.

    Google Scholar 

  • Beirne BP (1956) Leafhoppers (Homoptera: Cicadellidae) of Canada and Alaska. Canadian Entomology 88, 5–180.

    Google Scholar 

  • Bendix C, Lewis JD (2018) The enemy within phloem-limited pathogens. Molecular Plant Pathology 19, 238–254.

    Google Scholar 

  • Bertaccini A, Oshima K, Kakizawa S, Duduk B, Namba S (2016) Dissecting the multifaceted mechanisms that drive leafhopper host-phytoplasma specificity. In: Vector-Mediated Transmission of Plant Pathogens. Ed Brown JK. The American Phytopathological Society, St. Paul, Minnesota, United States of America, 21–28 pp.

    Google Scholar 

  • Bertin S, Guglielmino CR, Karam N, Gomulski ML, Malacrida AR, Gasperi G (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131, 275–285.

    Google Scholar 

  • Binimelis R, Born W, Monterroso I, Rodríguez-Labajos B (2007) Socio-economic impact and assessment of biological invasions. In: Biological invasions, Ecological studies. Ed Nentwig W. Vol 193. Springer, Berlin/Heidelberg, Germany, 331–347 pp.

    Google Scholar 

  • Bosco D, D’Amelio R (2010) Transmission specificity and competition of multiple phytoplasmas in the insect vector. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 293–308 pp.

    Google Scholar 

  • Bosco D, Alma A, Arzone A (1997) Studies on population dynamics and spatial distribution of leafhoppers in vineyards (Homoptera: Cicadellidae). Annals of Applied Biology 130, 1–11.

    Google Scholar 

  • Bressan A, Girolami V, Boudon-Padieu E (2005a) Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to “flavescence dorée” phytoplasma. Entomologia Experimentalis et Applicata 115, 283–290.

    Google Scholar 

  • Bressan A, Clair D, Sémétey O, Boudon-Padieu É (2005b) Effect of two strains of “flavescence dorée” phytoplasma on the survival and fecundity of the experimental leafhopper vector Euscelidius variegatus Kirschbaum. Journal of Invertebrate Pathology 89, 144–149.

    Google Scholar 

  • Briddon RW, Stenger DC, Bedford ID, Stanley J, Izadpanah K, Markham PG (1998) Comparison of a beet curly top virus isolate originating from the old world with those from the new world. European Journal of Plant Pathology 104, 77–84.

    Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72, 1605–1611.

    Google Scholar 

  • Bullas-Appleton ES, Otis G, Gillard C, Schaafsma AW (2004) Potato leafhopper (Homoptera: Cicadellidae) varietal preferences in edible beans in relation to visual and olfactory cues. Environmental Entomology 33, 1381–1388.

    Google Scholar 

  • Chen Y, Lu CC, Li MM, We W, Zhou GH, Wei TY (2016) Adverse effects of rice gall dwarf virus upon its insect vector Recilia dorsalis (Hemiptera: Cicadellidae). Plant Disease 100, 784–790.

    Google Scholar 

  • Chiykowski LN (1979) As a vector of aster yellows in North America. Canadian Journal of Plant Pathology 1, 37–41.

    Google Scholar 

  • Chiykowski LN (1981) Epidemiology of diseases caused by leafhopper-borne pathogens. In: Plant Disease and Vectors: Ecology and Epidemiology. Eds Maramorosch K, Harris KF. Academic Press, New York, United States of America, 106–159 pp.

    Google Scholar 

  • Chiykowski LN, Chapman RK (1965) Migration of the six spotted leafhopper in Central North America. Wisconin Agricultural Experimental Station Research Bulletin 261, 21–45.

    Google Scholar 

  • Chiykowski LN, Sinha RC (1969) Comparative efficiency of transmission of aster yellows by Elymana virescens and Macrosteles fascifrons and the relative concentration of the causal agent in the vectors. Journal of Economic Entomology 62, 883–886.

    Google Scholar 

  • Chown SL, Nicolson S (2004) Insect physiological ecology: mechanisms and patterns. Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Chuche J, Thiéry D (2014) Biology and ecology of the “flavescence dorée” vector Scaphoideus titanus: a review. Agronomic Sustainable Development 34, 381–403.

    Google Scholar 

  • Chuche J, Auricau-Bouvery N, Danet J-L, Thiéry D (2017) Use the insiders: could insect facultative symbionts control vector-borne plant diseases? Journal of Pest Science 90, 51–68.

    Google Scholar 

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annual Revue of Entomology 30, 297–317.

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annual Revue of Entomology 48, 29–50.

    Google Scholar 

  • Cryan JR (2005) Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cercopoidea and Membracoidea): adding evidence to the controversy. Systematic Entomology 30, 563–574.

    Google Scholar 

  • D’Amelio R, Palermo S, Marzachì C, Bosco D (2008) Influence of Chrysanthemum yellows phytoplasma on the fitness of two of its leafhopper vectors, Macrosteles quadripunctulatus and Euscelidius variegatus. Bulletin of Insectology 61, 349–354.

    Google Scholar 

  • Danielli A, Bertaccini A, Bosco D, Alma A, Vibio M, Arzone A (1996) May evidence of 16SrI-group-related phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball suggest their transovarial transmission? IOM Letters 4, 190–191.

    Google Scholar 

  • Decante M, van Helden M (2006) Population ecology of Empoasca vitis (Gothe) and Scaphoideus titanus (Ball) in Bordeaux vineyards: influence of migration and landscape. Crop Protection 25, 696–704.

    Google Scholar 

  • Delong DM (1971) The bionomics of leafhoppers. Annual Revue of Entomology 16, 179–210.

    Google Scholar 

  • Dietrich CH (2008) Leafhoppers (Hemiptera: Cicadomorpha: Cicadellidae). http://wwn.inhs.illinois.edu/~dietrich/Leafhome.html (16 November 2017).

  • Dietrich CH (2013) Overview of the phylogeny, taxonomy and diversity of the leafhopper (Hemiptera: Auchenorrhyncha: Cicadomorpha: Membracoidea: Cicadellidae) vectors of plant pathogens. International Symposium of Insect Vectors and Insect-Borne Diseases, Tai Chung, Taiwan, 47–70.

    Google Scholar 

  • Dietrich CH, Deitz LL (1993) Superfamily Membracoidea (Homoptera: Auchenorrhyncha). II. Cladistic analysis and conclusions. Systematic Entomology 18, 297–311.

    Google Scholar 

  • Dietrich CH, Rakitov RA, Holmes JL, Black WCIV (2001) Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Molecular Phylogenetic Evolution 18, 293–305.

    Google Scholar 

  • Dietrich CH, Dmitriev DA, Rakitov RA, Takiya DM, Zahniser JN (2005) Phylogeny of Cicadellidae (Cicadomorpha: Membracoidea) based on combined morphological and 28S rDNA sequence data. 12th International Auchenorrhyncha Congress, Berkeley, California, United States of America, S13–S14.

    Google Scholar 

  • Dmitriev DA (2003) 3I World Auchenorrhyncha databases. http://dmitriev.speciesfile.org/.

  • Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma- or PLT group-like micro-organisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or Paulownia witches’ broom. Annals of Phytopathological Society of Japan 33, 259–266.

    Google Scholar 

  • Ebbert MA, Nault LR (2001) Survival in Dalbulus leafhopper vectors improves after exposure to maize stunting pathogens. Entomologia Experimentalis et Applicata 100, 311–324.

    Google Scholar 

  • Eigenbrode SD, Bosque-Pérez N, Davis TS (2018) Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annual Revue of Entomology 63, 169–191.

    Google Scholar 

  • Esmailzadeh-Hosseini SA, Mirzaie A, Jafari-Nodooshan A, Rahimian H (2007) The first report of transmission of a phytoplasma associated with sesame phyllody by Orosius albicinctus in Iran. Australasia Plant Disease Notes 2, 33–34.

    Google Scholar 

  • Fatima U, Senthil-Kumar M (2015) Plant and pathogen nutrient acquisition strategies. Frontieres in Plant Science 6, 750.

    Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research 141, 158–168.

    Google Scholar 

  • Foissac X, Wilson MR (2010) Current and possible future distributions of phytoplasma diseases and their vectors. In: Phytoplasmas: Genomes, Plant Hosts, and Vectors. Eds Weintraub P, Jones P. CABI, Wallingford, United Kingdom, 309–324 pp.

    Google Scholar 

  • Fukushi T (1969) Relationships between propagative rice viruses and their vectors. In: Viruses, Vectors and Vegetation. Ed Maramorosch K. Wiley, New York, United States of America, 279–301 pp.

    Google Scholar 

  • Gaigher R, Pryke JS, Samways MJ (2015) High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biological Conservation 186, 69–74.

    Google Scholar 

  • Galetto L, Marzachì C, Demichelis S, Bosco D (2011) Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae). Journal of Economic Entomology 104, 360–366.

    Google Scholar 

  • Hamilton KGA (1983a) Classification, morphology and phylogeny of the family Cicadellidae (Rhynchota: Homoptera: Cicadellidae). 1st International Workshop on Biotaxonomy, Classification and Biology of Leafhoppers and Planthoppers (Auchenorrhyncha) of Economic Importance. London, 4–7 October 1982, 15–37.

    Google Scholar 

  • Hamilton KGA (1983b) Introduced and native leafhoppers common to the old and new worlds (Rhynchota: Homoptera: Cicadellidae). Canadian Entomology 115, 473–511.

    Google Scholar 

  • Hamilton KGA (1994) Evolution of Limotettix Sahlberg (Homoptera: Cicadellidae) in peatlands, with descriptions of new taxa. Memories of the Entomological Society of Canada 126, 111–133.

    Google Scholar 

  • Hanboonsong Y, Choosai C, Panyim S, Damak S (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Molecular Biology 11, 97–103.

    Google Scholar 

  • Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology 23, 1473–1496.

    Google Scholar 

  • Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403–423.

    Google Scholar 

  • Hoy CW, Heady SE, Koch TA (1992) Phenology, species composition, and possible origins of leafhoppers in Ohio vegetable crops. Journal of Economic Entomology 85, 2336–2343.

    Google Scholar 

  • Hoy CW, Zhou X, Nault LR, Miller SA, Styer J (1999) Host plant, phytoplasma, and reproductive status effects on flight behavior of aster leafhopper (Homoptera: Cicadellidae). Annals of Entomological Society of America 92, 523–528.

    Google Scholar 

  • Hruska AJ, Peralta MG (1997) Maize response to corn leafhopper (Homoptera: Cicadellidae) infestation and achaparramiento disease. Journal of Economic Entomology 90, 604–610.

    Google Scholar 

  • Hunt RE, Nault LR (1991) Roles of interplant movement, acoustic communication, and phototaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behaviour of Ecological Sociobiology 28, 315–320.

    Google Scholar 

  • Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S (2009) In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058–2067.

    Google Scholar 

  • Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Applied Environmental Microbiology 79, 5013–5022.

    Google Scholar 

  • Ishii-Eiteman MJ, Power AG (1997) Response of green rice leafhoppers to rice-planting practices in northern Thailand. Ecology Applied 7, 194–208.

    Google Scholar 

  • Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90, 909–914.

    Google Scholar 

  • Kingdom HN, Hogenhout SA (2007) Aster yellows phytoplasma witches’ broom (AY-WB; ‘Candidatus Phytoplasma asteris’) increases survival rates of Macrosteles quadrilineatus and Dalbulus maidis on various plant species. Bulletin of Insectology 60, 225–226.

    Google Scholar 

  • Krüger K, Venter F, Schröder ML (2015) First insights into the influence of aster yellows phytoplasma on the behaviour of the leafhopper Mgenia fuscovaria. Phytopathogenic Mollicutes 5(1-Supplement), S41–S42.

    Google Scholar 

  • La Grange MR (2016) Olfactory responses of the leafhopper vector, Mgenia fuscovaria Stål (Hemiptera: Cicadellidae), to volatiles from aster yellows phytoplasma-infected and uninfected grapevine (Vitis vinifera). MSc thesis, University of Pretoria, South Africa.

    Google Scholar 

  • La Grange R, Schröder ML, Glinwood R, Ignell R, Krüger K (2017) Leafhopper interactions with host plants – a role for volatile cues? IOBC-WPRS Bulletin 126, 22–26.

    Google Scholar 

  • Landi L, Isidoro N, Riolo P (2013) Natural phytoplasma infection of four phloem-feeding auchenorrhyncha across vineyard agroecosystems in central-eastern Italy. Journal of Economic Entomology 106, 604–613.

    Google Scholar 

  • Lee I-M, Gundersen-Rindal D, Bertaccini A (1998) Phytoplasma: ecology and genomic diversity. Phytopathology 88, 1359–1366.

    Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology 54, 1037–1048.

    Google Scholar 

  • Lessio F, Alma A (2004) Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera Cicadellidae), vector of the phytoplasma agent of grapevine “flavescence dorée”. Agricultural and Forest Entomology 6, 121–127.

    Google Scholar 

  • Lessio F, Tedeschi R, Alma A (2017) Influence of foraging strip crops on the presence of leafhoppers and planthoppers associated to grapevines’ phytoplasmas. Bulletin of Insectology 70, 221–229.

    Google Scholar 

  • MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology 12, e1001835.

    Google Scholar 

  • Maggi F, Galetto L, Marzachì C, Bosco D (2014) Temperature-dependent transmission of ‘Candidatus Phytoplasma asteris’ by the vector leafhopper Macrosteles quadripunctulatus Kirschbaum. Entomologia 2, 87–94.

    Google Scholar 

  • Makarova O, MacLean AM, Nicolaisen M (2015) Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression. Physiological Molecular Plant Pathology 91, 81–87.

    Google Scholar 

  • Maramorosch K, Harris KF (1979) Leafhopper vectors and plant disease agents. Academic Press Philadelphia, Balaban Publishers, New York, United States of America.

    Google Scholar 

  • Mayer CJ, Vilcinskas A, Gross J (2008a) Phytopathogen lures its insect vector by altering host plant odor. Journal of Chemical Ecology 34, 1045–1049.

    Google Scholar 

  • Mayer CJ, Vilcinskas A, Gross J (2008b) Pathogen-induced release of plant allomone manipulates vector insect behavior. Journal of Chemical Ecology 34, 1518–1522.

    Google Scholar 

  • Mazzoni V, Ioriatti C, Trona F, Lucchi A, De Cristofaro A, Anfora G (2009) Study on the role of olfaction in host plant detection of Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs. Journal of Economic Entomology 102, 974–980.

    Google Scholar 

  • Mazzoni V, Trona F, Ioriatti C, Lucchi A, Eriksson A, Anfora G (2011) Attractiveness of different colours to Scaphoideus titanus Ball (Hemiptera: Cicadellidae) adults. IOBC/WPRS Bulletin 67, 281–284.

    Google Scholar 

  • Meade AB, Peterson AG (1964) Origin of populations of the six-spotted leafhopper, Macrosteles fascifrons, in Anoka County, Minnesota. Journal of Economic Entomology 57, 885–888.

    Google Scholar 

  • Mitrovic M, Jovic J, Cvrkovic T, Krstic O, Trkulja N, Tosevski I (2012) Characterisation of a 16SrII phytoplasma strain associated with bushy stunt of hawkweed oxtongue (Picris hieracioides) in South-Eastern Serbia and the role of the leafhopper Neoaliturus fenestratus (Deltocephalinae) as a natural vector. European Journal of Plant Pathology 134, 647–660.

    Google Scholar 

  • Moya-Raygoza G, Nault LR (1998) Transmission biology of maize bushy stunt phytoplasma by the corn leafhopper (Homoptera: Cicadellidae). Annals of Entomological Society of America 91, 668–676.

    Google Scholar 

  • Murral DJ, Nault LR, Hoy CW, Madden LV, Miller SA (1996) Effects of temperature and vector age on transmission of two Ohio strains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). Journal of Economic Entomology 89, 1223–1232.

    Google Scholar 

  • National Research Council (2002) Predicting invasions of nonindigenous plants and plant pests. The National Academies Press, Washington, DC. United States of America, https://doi.org/10.17226/10259.

  • Nielson MW (1968) The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae). Taxonomy, biology and virus transmission. Technical Bulletin United States Department of Agriculture 1382, 1–386.

    Google Scholar 

  • Nielson MW (1979) Taxonomic relationships of leafhopper vectors of plant pathogens. In: Leafhopper Vectors as Plant Disease Agents. Eds Maramorosch K, Harris K. Academic Press, New York, United States of America, 3–27 pp.

    Google Scholar 

  • Oman PW, Knight WJ, Nielson MW (1990) Leafhoppers (Cicadellidae): a bibliography, generic check-list, and index to the world literature 1956–1985. CAB International Institute of Entomology, Wallingford, United Kingdom.

    Google Scholar 

  • Orenstein S, Zahavi T, Nestel D, Sharon R, Barkalifa M, Weintraub PG (2003) Spatial dispersion patterns of potential leafhopper and planthopper (Homoptera) vectors of phytoplasma in wine vineyards. Annals of Applied Biology 142, 341–348.

    Google Scholar 

  • Orlovskis Z, Hogenhout SA (2016) A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Frontieres in Plant Science 7, 885.

    Google Scholar 

  • Orlovskis Z, Canale MC, Thole V, Pecher P, Lopes JRS, Hogenhout SA (2015) Insect-borne plant pathogenic bacteria: getting a ride goes beyond physical contact. Current Opinion on Insect Science 9, 16–23.

    Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S-I, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetic 36, 27–29.

    Google Scholar 

  • Ou SH (1985) Rice diseases. CABI, Slough, United Kingdom.

    Google Scholar 

  • Pacifico D, Galetto L, Rashidi M, Abbà S, Palmano S, Firrao G, Bosco D, Marzachì C (2015) Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Applied and Environmental Microbiology 81, 2591–2602.

    Google Scholar 

  • Papura D, Delmotte F, Giresse X, Salar P, Danet JL, Van Helden M, Foissac X, Malembic-Maher S (2009) Comparing the spatial genetic structures of the “flavescence dorée” phytoplasma and its leafhopper vector Scaphoideus titanus. Infectivity Gene Evolution 9, 867–876.

    Google Scholar 

  • Patt JM, Sétamou M (2007) Olfactory and visual stimuli affecting host plant detection in Homalodisca coagulata (Hemiptera: Cicadellidae). Environmental Entomology 36, 142–150.

    Google Scholar 

  • Pérez KA, Piñol B, Arocha Rosete Y, Wilson M, Boa E, Lucas J (2010) Transmission of the phytoplasma associated with bunchy top symptom of papaya by Empoasca papayae Oman. Journal of Phytopathology 158, 194–196.

    Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291.

    Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Revue of Entomology 51, 309–330.

    Google Scholar 

  • Purcell AH (1982) Evolution of the insect vector relationship. In: Phytopathogenic Prokaryotes. Eds Mount MS, Lacey GH. Academic Press, New York, United States of America, 121–156 pp.

    Google Scholar 

  • Purcell AH, Suslow KG (1987) Pathogenicity and effects on transmission of a mycoplasmalike organism of a transovarially infective bacterium on the leafhopper Euscelidius variegatus (Homoptera: Cicadellidae). Journal of Invertebrate Pathology 50, 285–290.

    Google Scholar 

  • Rabitsch W (2010) True bugs (Hemiptera, Heteroptera). BioRisk 4, 407–433.

    Google Scholar 

  • Rashidi M, D’Amelio R, Galetto L, Marzachì C, Bosco D (2014) Interactive transmission of two phytoplasmas by the vector insect. Annals of Applied Biology 165, 404–413.

    Google Scholar 

  • Rashidi M, Galetto L, Bosco D, Bulgarelli A, Vallino M, Veratti F, Marzachì C (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiology 15, 193.

    Google Scholar 

  • Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell Iii RF, Andersen PC (2003) The biology of xylem fluid–feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Revue of Entomology 49, 243–270.

    Google Scholar 

  • Reineke A, Thiéry D (2016) Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science 89, 313–328.

    Google Scholar 

  • Roques A, Rabitsch W, Rasplus JY, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: Delivering Alien Invasive Species Inventory for Europe. Ed DAISIE consortium, Handbook of alien species in Europe. Springer, Dordrecht, The Netherlands, 63–79 pp.

    Google Scholar 

  • Salehi M, Izadpanah K, Nejat N, Siampour M (2007) Partial characterization of phytoplasmas associated with lettuce and wild lettuce phyllodies in Iran. Plant Pathology 56, 669–676.

    Google Scholar 

  • Saxena KN, Gandhi JR, Saxena RC (1974) Patterns of relationship between certain leafhoppers and plants. I. Responses to plants. Entomologia Experimentalis et Applicata 17, 303–318.

    Google Scholar 

  • Seljak G (2013) Hishimonus hamatus Kuoh (Hemiptera: Cicadellidae): a new alien leafhopper in Europe. Acta Entomologica Slovenica 21, 123–130.

    Google Scholar 

  • Stacconi MVR, Romani R (2012) Antennal sensory structures in Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Microscopy Research Technology 75, 458–466.

    Google Scholar 

  • Sugio A, Hogenhout SA (2012) The genome biology of phytoplasma: modulators of plants and insects. Current Opinion in Microbiology 15, 247–254.

    Google Scholar 

  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011a) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Revue of Phytopathology 49, 175–195.

    Google Scholar 

  • Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011b) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of National Academy of Sciences United States of America 108, E1254–E1263.

    Google Scholar 

  • Summers CG, Newton AS, Opgenorth DC (2004) Overwintering of corn leafhopper, Dalbulus maidis (Homoptera: Cicadellidae), and Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) in California’s San Joaquin Valley. Environmental Entomology 33, 1644–1651.

    Google Scholar 

  • Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Science United States of America 103, 4252–4257.

    Google Scholar 

  • Tan CM, Li C-H, Tsao N-W, Su L-W, Lu Y-T, Chang SH, Lin YY, Liou J-C, Hsieh L-C, Yu J-Z, Sheue C-R, Wang S-Y, Lee C-F, Yang J-Y (2016) Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. Journal of Experimental Botany 67, 4415–4425.

    Google Scholar 

  • TaxonWorks (2015) TaxonWorks. http://taxonworks.org.

    Google Scholar 

  • Todd JL, Phelan PL, Nault LR (1990) Interaction between visual and olfactory stimuli during host-finding by leafhopper, Dalbulus maidis (Homoptera: Cicadellidae). Journal of Chemical Ecology 16, 2121–2133.

    Google Scholar 

  • Trivedi P, Trivedi C, Grinyer J, Anderson IC, Singh BK (2016) Harnessing host-vector microbiome for sustainable plant disease management of phloem-limited bacteria. Frontieres in Plant Science 7, 1423.

    Google Scholar 

  • Trivellone V, Knop E, Turrini T, Andrey A, Humbert JY, Kunz G (2015) New and remarkable leafhoppers and planthoppers (Hemiptera: Auchenorrhyncha) from Switzerland. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 88, 273–284.

    Google Scholar 

  • Trivellone V, Angelini E, Dmitriev DA, Dietrich CH (2017a) Preliminary results on phylogenetic relatedness of potential and known Auchenorrhyncha vectors of phytoplasmas. 15th International Auchenorrhyncha Congress and 10th International Workshop on Leafhoppers and Planthoppers of Economic Importance, Mendes, Brazil, 81.

    Google Scholar 

  • Trivellone V, Mitrović M, Dietrich CH, Toševski I (2017b) Osbornellus auronitens (Hemiptera: Cicadellidae: Deltocephalinae), an introduced species new for the Palaearctic region. Canadian Entomology 149, 551–559.

    Google Scholar 

  • Waloff N (1973) Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera). Journal of Applied Ecology 10, 705–730.

    Google Scholar 

  • Weintraub PG (2007) Insect vectors of phytoplasmas and their control – an update. Bulletin of Insectology 60, 169–173.

    Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Revue of Entomology 51, 91–111.

    Google Scholar 

  • Weintraub PG, Pivonia S, Rosner A, Gera A (2004) A new disease in Limonium latifolium hybrids. II. Investigating insect vectors. Hortscience 39, 1060–1061.

    Google Scholar 

  • Whitcomb RF, Hicks AL (1988) Genus Flexamia: new species, phylogeny, and ecology. Great Basin Natural Memories 12, 224–323.

    Google Scholar 

  • Wilson MR, Weintraub PG (2007) An introduction to Hemiptera phytoplasma vectors. Bulletin of Insectology 60, 177–178.

    Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology 4, e188.

    Google Scholar 

  • Yang X, Huang JL, Liu CH, Chen B, Zhang T, Zhou GH (2017) Rice stripe mosaic virus, a novel cytorhabdovirus infecting rice via leafhopper transmission. Frontieres in Microbiology 7, 2140.

    Google Scholar 

  • Zahniser JN, Dietrich CH (2008) Phylogeny of the leafhopper subfamily Deltocephalinae (Insecta: Auchenorrhyncha: Cicadellidae) and related subfamilies based on morphology. Systematic Biodiversity 6, 1–24.

    Google Scholar 

  • Zahniser JN, Dietrich CH (2010) Phylogeny of the leafhopper subfamily Deltocephalinae (Hemiptera: Cicadellidae) based on molecular and morphological data with a revised family-group classification. Systematic Entomology 35, 489–511.

    Google Scholar 

  • Zahniser JN, Dietrich CH (2013) A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). European Journal of Taxonomy 45, 1–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis G. Weintraub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weintraub, P.G., Trivellone, V., Krüger, K. (2019). The Biology and Ecology of Leafhopper Transmission of Phytoplasmas. In: Bertaccini, A., Weintraub, P., Rao, G., Mori, N. (eds) Phytoplasmas: Plant Pathogenic Bacteria - II. Springer, Singapore. https://doi.org/10.1007/978-981-13-2832-9_2

Download citation

Publish with us

Policies and ethics