Skip to main content

A Comprehensive Evaluation: Water Cycle Algorithm and Its Applications

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Abstract

Recently nature-inspired optimization algorithms have become a popular choice for solving complex optimization problems. Water Cycle Algorithm (WCA) is a nature-inspired new optimization technique, which has successfully applied to solve the constrained optimization and engineering design problems. As a result, the WCA studies have extended significantly in the last 5 years. This review paper provides the comprehensive assessment of WCA in the area of modifications, hybridizations, and applications. Moreover, it will provide the awareness to the researchers how the current algorithm can be modified according to the nature of the problems. The narrative of how WCA was used in the tactics for solving these kinds of problems. Future research directions are also discussed based on the comprehensive conclusion as well as discussion. To the best of our knowledge, this is the first review article which has enclosed extensive information about the WCA and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  2. Ingber, L.: Simulated annealing: practice versus theory. Math. Comput. Model. 18(11), 29–57 (1993)

    Article  MathSciNet  Google Scholar 

  3. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Press, New York (1995)

    Google Scholar 

  4. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic in evolutionary computation. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press, New York (2002)

    Google Scholar 

  5. Sadollah, A., et al.: WCA with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft Comput. 30, 58–71 (2015)

    Article  Google Scholar 

  6. Eskandar, H., et al.: WCA–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  7. Haddad, O.B., Moravej, M., Loáiciga, H.A.: Application of the WCA to the optimal operation of reservoir systems. J. Irrig. Drain. Eng. 141(5), 0401–4064 (2014)

    Google Scholar 

  8. Lenin, K., Reddy, B.R., Kalavathi, M.S.: WCA for solving optimal reactive power dispatch problem. J. Eng. Technol. Res. 2(2), 1–11 (2014)

    Google Scholar 

  9. Jabbar, A., Zainudin, S.: WCA for attribute reduction problems in rough set theory. J. Theor. Appl. Inf. Technol. 61(1), 107–117 (2014)

    Google Scholar 

  10. Guney, K., Basbug, S.: A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters. Int. J. RF Microw. Comput.-Aided Eng. 25(1), 21–29 (2015)

    Article  Google Scholar 

  11. Sadollah, A., et al.: WCA for solving multi-objective optimization problems. Soft. Comput. 19(9), 2587–2603 (2015)

    Article  Google Scholar 

  12. Sadollah, A., Eskandar, H., Kim, J.H.: WCA for solving constrained multi-objective optimization problems. Appl. Soft Comput. 27, 279–298 (2015)

    Article  Google Scholar 

  13. Zhu, H., et al.: Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Syst. Appl. 38(8), 10161–10169 (2011)

    Article  Google Scholar 

  14. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933 (2005)

    Article  Google Scholar 

  15. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimization. Int. J. Metaheuristics 3(4), 320–347 (2014)

    Article  Google Scholar 

  16. Jordehi, A.R.: A chaotic artificial immune system optimization algorithm for solving global continuous optimization problems. Neural Comput. Appl. 26(4), 827–833 (2015)

    Article  Google Scholar 

  17. David, S.: The Water Cycle, Illustrations by John Yates. Thomson Learning, New York (1993)

    Google Scholar 

  18. Heidari, A.A., Abbaspour, R.A., Jordehi, A.R.: Gaussian bare-bones WCA for optimal reactive power dis-patch in electrical power systems. Appl. Soft Comput. 57, 657–671 (2017)

    Article  Google Scholar 

  19. Deihimi, A., et al.: Solving smooth and non-smooth economic dispatch using WCA. In: 2017 The 5th International Conference on Electrical Engineering - (ICEE-B), Bahria University Islamabad Campus, Boumerdes, Algeria, pp. 29–31. IEEE (2017)

    Google Scholar 

  20. Hu, Z., Wang, X., Taylor, G.: Stochastic optimal reactive power dispatch: formulation and solution method. Int. J. Electr. Power Energy Syst. 32(6), 615–621 (2010)

    Article  Google Scholar 

  21. Mezura-Montes, E., Coello, C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen Syst 37(4), 443–473 (2008)

    Article  MathSciNet  Google Scholar 

  22. Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65(8), 1558–1568 (2009)

    Article  Google Scholar 

  23. Wang, C., Ou, F.: An attribute reduction algorithm in rough set theory based on information entropy. In: 2008 International Symposium on Computational Intelligence and Design. ISCID 2008, pp. 3–6. IEEE (2008)

    Google Scholar 

  24. Al-Saedi, A.S.J.: Hybrid water cycle algorithm for attribute reduction problems. In: Proceedings of the World Congress on Engineering and Computer Science (WCECS), San Francisco, USA, vol. I (2015)

    Google Scholar 

  25. Khalilpourazari, S., Khalilpourazary, S.: An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput. 21(20), 1–24 (2017)

    Google Scholar 

  26. Pahnehkolaei, S.M.A., et al.: Gradient-based WCA with evaporation rate applied to chaos suppression. Appl. Soft Comput. 53, 420–440 (2017)

    Article  Google Scholar 

  27. Jahan, M.V., Dashtaki, M., Dashtaki, M.: WCA improvement for solving job shop scheduling problem. In: 2015 International Congress on Technology, Communication and Knowledge, pp. 576–581. IEEE Press, New York (2015)

    Google Scholar 

  28. Gao, K., Duan, P., Su, R., Li, J.: Bi-objective water cycle algorithm for solving remanufacturing rescheduling problem. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 671–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_54

    Chapter  Google Scholar 

  29. Qiao, S., Zhou, Y., Wang, R., Zhou, Y.: Self-adaptive percolation behavior water cycle algorithm. In: Huang, D.-S., Bevilacqua, V., Prashan, P. (eds.) ICIC 2015. LNCS, vol. 9225, pp. 85–96. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22180-9_9

    Chapter  Google Scholar 

  30. Gao, K., et al.: Jaya, harmony search and WCAs for solving large-scale real-life urban traffic light scheduling problem. Swarm Evol. Comput. 37, 58–72 (2017)

    Article  Google Scholar 

  31. Heidari, A.A., Abbaspour, R.A., Jordehi, A.R.: An efficient chaotic WCA for optimization tasks. Neural Comput. Appl. 28(1), 57–85 (2017)

    Article  Google Scholar 

  32. Sadollah, A., et al.: Sizing optimization of sandwich panels having prismatic core using WCA. In: 2013 Fourth Global Congress on Intelligent Systems, pp. 325–328. IEEE (2013)

    Google Scholar 

  33. Méndez, E., Castillo, O., Soria, J., Melin, P., Sadollah, A.: Water cycle algorithm with fuzzy logic for dynamic adaptation of parameters. In: Sidorov, G., Herrera-Alcántara, O. (eds.) MICAI 2016. LNCS (LNAI), vol. 10061, pp. 250–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62434-1_21

    Chapter  Google Scholar 

  34. Oscar, C., Eduardo, R., Olympia, R.: WCA augmentation with fuzzy and intuitionistic fuzzy dynamic adaptation of parameters. Notes Instuitionistic Fuzzy Sets 23(1), 79–94 (2017)

    Google Scholar 

  35. Sarvi, M., Avanaki, I.N.: An optimized fuzzy logic controller by WCA for power management of stand-alone hybrid green power generation. Energy Convers. Manag. 106, 118–126 (2015)

    Article  Google Scholar 

  36. Rezk, H., Fathy, A.: A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic WCA. Sol. Energy 157, 778–791 (2017)

    Article  Google Scholar 

  37. Liu, Z., Li, W., Ouyang, H.: Structural modifications for torsional vibration control of shafting systems based on torsional receptances. Shock. Vib. 9 (2016). https://doi.org/10.1155/2016/2403426

    Google Scholar 

  38. Moradi, M., et al.: The application of WCA to portfolio selection. Econ. Res.-Ekon. Istraživanja 30(1), 1277–1299 (2017)

    Article  Google Scholar 

  39. Deihimi, A., Zahed, B.K., Iravani, R.: An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform WCA. Energy 106, 482–509 (2016)

    Article  Google Scholar 

  40. Khalilpourazari, S., Mohammadi, M.: Optimization of closed-loop supply chain network design: a WCA approach. In: 2016 12th International Conference on Industrial Engineering (ICIE), pp. 41–45. IEEE (2016)

    Google Scholar 

  41. Praepanichawat, C., Khompatraporn, C., Jaturanonda, C., Chotyakul, C.: Water cycle and artificial bee colony based algorithms for optimal order allocation problem with mixed quantity discount scheme. In: Gen, M., Kim, Kuinam J., Huang, X., Hiroshi, Y. (eds.) Industrial Engineering, Management Science and Applications 2015. LNEE, vol. 349, pp. 229–239. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47200-2_26

    Chapter  Google Scholar 

  42. Magalhães-Mendes, J., Greiner, D.: Evolutionary algorithms and metaheuristics in civil engineering and construction management. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-20406-2

    Book  Google Scholar 

  43. Nayak, S.K., Panda, C.S., Padhy, S.K.: Efficient multiprocessor scheduling using water cycle algorithm. In: Ray, K., Pant, M., Bandyopadhyay, A. (eds.) Soft Computing Applications. SCI, vol. 761, pp. 131–147. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8049-4_7

    Chapter  Google Scholar 

  44. Sadollah, A., et al.: Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Comput. Struct. 149, 1–16 (2015)

    Article  Google Scholar 

  45. Sadollah, A., et al.: Application of WCA for optimal cost design of water distribution systems. In: 11th International Conference on Hydroinformatics. CUNY Academic Works (2014)

    Google Scholar 

  46. Ashouri, M., Hosseini, S.M.: Application of krill herd and WCAs on dynamic economic load dispatch problem. Int. J. Inf. Eng. Electron. Bus. 6(4), 12 (2014)

    Google Scholar 

  47. Naveed, S., Haroon, S.S., Khan, N.A.: Solving non-convex economic dispatch using WCA. NED Univ. J. Res. 13(2), 31 (2016)

    Google Scholar 

  48. Barzegar, A., et al.: Optimal power flow solution using WCA. In: 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–4. IEEE (2016)

    Google Scholar 

  49. Elhameed, M., El-Fergany, A.: WCA-based economic dispatcher for sequential and simultaneous objectives including practical constraints. Appl. Soft Comput. 58, 145–154 (2017)

    Article  Google Scholar 

  50. El-Hameed, M.A., El-Fergany, A.A.: WCA-based load frequency controller for interconnected power systems comprising non-linearity IET generation. Transm. Distrib. 10(15), 3950–3961 (2016)

    Article  Google Scholar 

  51. Yanjun, K., et al.: An enhanced WCA for optimization of multi-reservoir systems. In: 16th International Conference on Computer and Information Science, pp. 379–386. IEEE Press, New York (2017)

    Google Scholar 

  52. Ghaffarzadeh, N.: WCA based power system stabilizer robust design for power systems. J. Electr. Eng. 66(2), 91–96 (2015)

    MathSciNet  Google Scholar 

  53. Kler, D., et al.: PV cell and module efficient parameters estimation using evaporation rate based WCA. Swarm Evol. Comput. 35, 93–110 (2017)

    Article  Google Scholar 

  54. Haroon, S.S., Malik, T.N.: Evaporation rate-based WCA for short-term hydrothermal scheduling. Arab. J. Sci. Eng. 42(7), 2615–2630 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by grants from The Natural Science Foundation of China (Grant No. 71571120, 71271140); Project of Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2016; China Postdoctoral Science Foundation (Grant No. 2016M602528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Geng .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interests regarding the publishing of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jafar, R.M.S., Geng, S., Ahmad, W., Hussain, S., Wang, H. (2018). A Comprehensive Evaluation: Water Cycle Algorithm and Its Applications. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2829-9_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2828-2

  • Online ISBN: 978-981-13-2829-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics