Skip to main content

Rheological Properties of Polymer–Carbon Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Polymer rheology is an enormously sensitive indicator of polymer long-chain branching, and consequently can be exploited as a tool to evaluate polymer structures. Carbonaceous fillers are most abundantly used filler due to its reinforcing nature and its low cost. Among the carbon filler family, the most widely uttered names are carbon black and carbon nanotubes (CNTs) because of their relatively low cost, ease of processing, surprising dispersibility and mechanical strength. Several researchers did work on the polymer solution or polymer melt-based composite processing methods in order to distribute the fillers at a greater extent. It has been noticed by the various researchers that carbon black is easier to distribute than CNTs due to low aspect ratio of CNTs. Several rheological models have been discussed for filler-polymer composite systems. The relation among the rheological parameters is discussed also in light of yield stress value, shear rates and steady-state shear character of composites. We also discussed how the polymer/filler ratio affects the rheological nature of nanocomposites. Basically, dilute domains (rheology dominated by polymer concentration) and semi-dilute domains (dominated by the filler particles, filler fractals/cluster, filler agglomerates, etc.) have been analysed by various hypothesizes as told by researchers. However, we tried to contextualize the rheological resultant effects of carbonaceous filler impregnated polymer composites through the underlying structure-dispersion relationship and cultivate the interplay of different filler-polymer forces in the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNTs:

Carbon nanotubes

SPM:

Scanning probe microscopy

T g :

Glass transition temperature

MC:

Monte Carlo

–CH2:

Methylene

–CH3:

Methyl

PE:

Polyethylene

G * :

Complex modulus

WLF:

Williams–Landel–Ferry

PTT:

Phan–Thein–Tanner

UCM:

Upper-Convected Maxwell

K-BKZ:

Kaye and Bernstein

EPDM:

Ethylene propylene diene monomer

SWCNT:

Single wall carbon nanotubes

MWCNT:

Multi wall carbon nanotubes

GPa:

Giga pascal

η * :

Complex viscosity

f c :

Percolation threshold

σ max :

Maximum stress

References

  1. Sheldon RP (1982) Composite polymeric materials: applied science. Elsevier Science distributor

    Google Scholar 

  2. McCabe KA, Rassenti SJ, Smith VL (1990) Auction design for composite goods: the natural gas industry. J Econ Behav Organ 14(1):127–149

    Article  Google Scholar 

  3. Almomen A, Cho S, Yang C-H, Li Z, Jarboe EA, Peterson CM et al (2015) Thermosensitive progesterone hydrogel: a safe and effective new formulation for vaginal application. Pharm Res 32(7):2266–2279

    Article  CAS  Google Scholar 

  4. Robeson LM (2007) Polymer blends. A comprehensive review. Leseprobe

    Google Scholar 

  5. Nichetti D, Manas-Zloczower I (1998) Viscosity model for polydisperse polymer melts. J Rheol (1978-present) 42(4):951–969

    Article  CAS  Google Scholar 

  6. Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol (1978-present) 37(5):827–846

    Article  CAS  Google Scholar 

  7. Seemann R, Herminghaus S, Neto C, Schlagowski S, Podzimek D, Konrad R et al (2005) Dynamics and structure formation in thin polymer melt films. J Phys: Condens Matter 17(9):S267

    CAS  Google Scholar 

  8. Daoulas KC, Harmandaris VA, Mavrantzas VG (2005) Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38(13):5780–5795

    Article  CAS  Google Scholar 

  9. Bojan MJ, Steele WA (1987) Interactions of diatomic molecules with graphite. Langmuir 3(6):1123–1127

    Article  CAS  Google Scholar 

  10. Xanthos M, Dagli S (1991) Compatibilization of polymer blends by reactive processing. Polym Eng Sci 31(13):929–935

    Article  CAS  Google Scholar 

  11. Ferry JD (1980) Viscoelastic properties of polymers. Wiley

    Google Scholar 

  12. Prest W, Porter RS (1972) Rheological properties of poly (2, 6-dimethylphenylene oxide)—polystyrene blends. J Polym Sci Part A-2: Polym Phys 10(9):1639–1655

    Article  CAS  Google Scholar 

  13. Ogah AO, Afiukwa JN, Nduji A (2014) Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open J Polym Chem

    Google Scholar 

  14. Moutee M, Fortin Y, Fafard M (2007) A global rheological model of wood cantilever as applied to wood drying. Wood Sci Technol 41(3):209–234

    Article  CAS  Google Scholar 

  15. Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37(4):595–623

    Article  CAS  Google Scholar 

  16. Qiao X, Li W, Watanabe H, Sun K, Chen X (2009) Rheological behavior of biocomposites of silk fibroin fiber and poly (ε-caprolactone): effect of fiber network. J Polym Sci, Part B: Polym Phys 47(20):1957–1970

    Article  CAS  Google Scholar 

  17. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci—Mater Med 16(10):933–946

    Article  CAS  Google Scholar 

  18. Marynowski K (2006) Two-dimensional rheological element in modelling of axially moving viscoelastic web. Eur J Mech-A/Solids 25(5):729–744

    Article  Google Scholar 

  19. Dealy JM, Wissbrun KF (2012) Melt rheology and its role in plastics processing: theory and applications. Springer Science & Business Media

    Google Scholar 

  20. Ansari M, Hatzikiriakos SG, Mitsoulis E (2012) Slip effects in HDPE flows. J Nonnewton Fluid Mech 167:18–29

    Google Scholar 

  21. Ansari M, Alabbas A, Hatzikiriakos S, Mitsoulis E (2010) Entry flow of polyethylene melts in tapered dies. Int Polym Proc 25(4):287–296

    Article  CAS  Google Scholar 

  22. Phillips T, Owens R (2002) Computational rheology. Imperial College Press, London, UK

    Google Scholar 

  23. Willett J, Jasberg B, Swanson C (1995) Rheology of thermoplastic starch: effects of temperature, moisture content, and additives on melt viscosity. Polym Eng Sci 35(2):202–210

    Article  CAS  Google Scholar 

  24. James DF (2009) Boger fluids. Annu Rev Fluid Mech 41:129–142

    Article  Google Scholar 

  25. Jarecki L, Lewandowski Z (2009) Mathematical modelling of pneumatic melt spinning of isotactic polypropylene. Part III. Computations of the process dynamics. Fibres Text Eastern Eur 17(1):75–80

    Google Scholar 

  26. Higashitani K, Pritchard W (1972) A kinematic calculation of intrinsic errors in pressure measurements made with holes. Trans Soc Rheol (1957–1977) 16(4):687–696

    Article  Google Scholar 

  27. Cherizol R, Sain M, Tjong J (2015) Review of non-Newtonian mathematical models for rheological characteristics of viscoelastic composites. Green Sustain Chem 5(01):6

    Article  CAS  Google Scholar 

  28. Crochet M, Legat V (1992) The consistent streamline-upwind/Petrov-Galerkin method for viscoelastic flow revisited. J Nonnewton Fluid Mech 42(3):283–299

    Article  CAS  Google Scholar 

  29. Bird RB, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids, vol 1. Fluid mechanics

    Google Scholar 

  30. Tucker C, Dessenberger R (1994) Flow and rheology in polymer composites manufacturing, chapter 8. Elsevier Science

    Google Scholar 

  31. Grafe T, Graham K (2003) Polymeric nanofibers and nanofiber webs: a new class of nonwovens. Nonwoven Technol Rev 12:51–55

    CAS  Google Scholar 

  32. Zhou C, Kumar S (2010) Thermal instabilities in melt spinning of viscoelastic fibers. J Nonnewton Fluid Mech 165(15):879–891

    Article  CAS  Google Scholar 

  33. da Silva LJ, Panzera TH, Velloso VR, Christoforo AL, Scarpa F (2012) Hybrid polymeric composites reinforced with sisal fibres and silica microparticles. Compos B Eng 43(8):3436–3444

    Article  Google Scholar 

  34. Devereux BM, Denn MM (1994) Frequency response analysis of polymer melt spinning. Ind Eng Chem Res 33(10):2384–2390

    Article  CAS  Google Scholar 

  35. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316

    Article  CAS  Google Scholar 

  36. Ellyin F, Vaziri R, Bigot L (2007) Predictions of two nonlinear viscoelastic constitutive relations for polymers under multiaxial loadings. Polym Eng Sci 47(5):593–607

    Article  CAS  Google Scholar 

  37. Burghardt W, Fuller G (1989) Note: end effects in flow birefringence measurements. J Rheol (1978-present) 33(5):771–779

    Article  CAS  Google Scholar 

  38. Maders H, Vergnes B, Demay Y, Agassant J (1992) Steady flow of a White-Metzner fluid in a 2-D abrupt contraction: computation and experiments. J Nonnewton Fluid Mech 45(1):63–80

    Article  CAS  Google Scholar 

  39. Thien NP, Tanner RI (1977) A new constitutive equation derived from network theory. J Nonnewton Fluid Mech 2(4):353–365

    Article  Google Scholar 

  40. Brondani WM, Coradin HT, Franco AT, Morales RE, Martins AL (2007) Numerical study of a PTT visco elastic fluid flow through a concentric annular. In: Proceedings of COBEM (Brasillia)

    Google Scholar 

  41. Phan‐Thien N (1978) A nonlinear network viscoelastic model. J Rheol (1978-present) 22(3):259–283

    Article  Google Scholar 

  42. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Nonnewton Fluid Mech 11(1–2):69–109

    Article  CAS  Google Scholar 

  43. Giesekus H (1985) Constitutive equations for polymer fluids based on the concept of configuration-dependent molecular mobility: a generalized mean-configuration model. J Nonnewton Fluid Mech 17(3):349–372

    Article  CAS  Google Scholar 

  44. Mostafaiyan M, Khodabandehlou K, Sharif F (2004) Analysis of a viscoelastic fluid in an annulus using Giesekus model. J Nonnewton Fluid Mech 118(1):49–55

    Article  CAS  Google Scholar 

  45. Isaki T, Takahashi M, Takigawa T, Masuda T (1991) Comparison between uniaxial and biaxial elongational flow behavior of viscoelastic fluids as predicted by differential constitutive equations. Rheol Acta 30(6):530–539

    Article  CAS  Google Scholar 

  46. Yarin AL, Sinha-Ray S, Pourdeyhimi B (2010) Meltblowing: II-linear and nonlinear waves on viscoelastic polymer jets. J Appl Phys 108(3):034913

    Article  Google Scholar 

  47. Luo X-L, Tanner R (1987) A pseudo-time integral method for non-isothermal viscoelastic flows and its application to extrusion simulation. Rheol Acta 26(6):499–507

    Article  CAS  Google Scholar 

  48. Chauvière C, Owens RG (2002) A robust spectral element method for simulations of time-dependent viscoelastic flows, derived from the Brownian configuration field method. J Sci Comput 17(1–4):191–199

    Article  Google Scholar 

  49. Cirulis JT, Keeley FW, James DF (2009) Viscoelastic properties and gelation of an elastin-like polypeptide. J Rheol (1978-present) 53(5):1215–1228

    Article  CAS  Google Scholar 

  50. Oldroyd J (1950) On the formulation of rheological equations of state. Proc Roy Soc Lond A 200:523–541

    Article  CAS  Google Scholar 

  51. Scott J (1935) Theory and application of the parallel-plate plastimeter. Part 2. Rubber Chem Technol 8(4):587–596

    Article  CAS  Google Scholar 

  52. Dillon J, Johnston N (1933) The plastic properties of several types of unvulcanized rubber stocks at high rates of shear. J Appl Phys 4(6):225–235

    CAS  Google Scholar 

  53. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362

    Article  CAS  Google Scholar 

  54. White JL, Soos I (1993) The development of elastomer rheological processability quality control instruments. Rubber Chem Technol 66(3):435–454

    Article  CAS  Google Scholar 

  55. Zakharenko N, Tolstukhina F, Bartenev G (1962) Flow of rubberlike polymers with and without carbon black. Rubber Chem Technol 35(2):326–334

    Article  Google Scholar 

  56. Bershtein V, Yegorov V, Marikhin V, Myasnikova L (1985) Specific features of molecular motion in lamellar polyethylene between 100 and 400 K. Polym Sci USSR 27(4):864–874

    Article  Google Scholar 

  57. Toki S, White JL (1982) Rheological and solid wall boundary condition characterization of unvulcanized elastomers and their compounds. J Appl Polym Sci 27(8):3171–3184

    Article  CAS  Google Scholar 

  58. Lobe VM, White JL (1979) An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt. Polym Eng Sci 19(9):617–624

    Article  CAS  Google Scholar 

  59. Tanaka H, White JL (1980) Experimental investigations of shear and elongational flow properties of polystyrene melts reinforced with calcium carbonate, titanium dioxide, and carbon black. Polym Eng Sci 20(14):949–956

    Article  CAS  Google Scholar 

  60. Suetsugu Y, White JL (1983) The influence of particle size and surface coating of calcium carbonate on the rheological properties of its suspensions in molten polystyrene. J Appl Polym Sci 28(4):1481–1501

    Article  CAS  Google Scholar 

  61. Suh CH, White JL (1996) Talc-thermoplastic compounds: particle orientation in flow and rheological properties. J Nonnewton Fluid Mech 62(2):175–206

    Article  CAS  Google Scholar 

  62. Osanaiye GJ, Leonov AI, White JL (1993) Investigations of the rheological behavior of rubber-carbon black compounds over a wide range of stresses including very low stresses. J Nonnewton Fluid Mech 49(1):87–101

    Article  CAS  Google Scholar 

  63. Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10(15):1157–1171

    Article  CAS  Google Scholar 

  64. Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3):219–225

    Article  CAS  Google Scholar 

  65. Lozano K, Barrera E (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79(1):125–133

    Article  CAS  Google Scholar 

  66. Lozano K, Bonilla-Rios J, Barrera E (2001) A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties. J Appl Polym Sci 80(8):1162–1172

    Article  CAS  Google Scholar 

  67. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  CAS  Google Scholar 

  68. Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stöckli T et al (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944

    Article  CAS  Google Scholar 

  69. Walters D, Ericson L, Casavant M, Liu J, Colbert D, Smith K et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 74(25):3803–3805

    Article  CAS  Google Scholar 

  70. Li F, Cheng H, Bai S, Su G, Dresselhaus M (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77(20):3161–3163

    Article  CAS  Google Scholar 

  71. Pötschke P, Fornes T, Paul D (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255

    Article  Google Scholar 

  72. Chatterjee T, Krishnamoorti R (2013) Rheology of polymer carbon nanotubes composites. Soft Matter 9(40):9515–9529

    Article  CAS  Google Scholar 

  73. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    Article  CAS  Google Scholar 

  74. Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly (ethylene oxide). Macromolecules 41(14):5333–5338

    Article  CAS  Google Scholar 

  75. Moreira L, Fulchiron R, Seytre G, Dubois P, Cassagnau P (2010) Aggregation of carbon nanotubes in semidilute suspension. Macromolecules 43(3):1467–1472

    Article  CAS  Google Scholar 

  76. Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107(23):10191–10200

    Article  CAS  Google Scholar 

  77. Silbert L, Farr R, Melrose JR, Ball R (1999) Stress distributions in flowing aggregated colloidal suspensions. J Chem Phys 111(10):4780–4789

    Article  CAS  Google Scholar 

  78. Thomin JD, Keblinski P, Kumar SK (2008) Network effects on the nonlinear rheology of polymer nanocomposites. Macromolecules 16(41):5988–5991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Ch Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguly, S., Das, N.C. (2019). Rheological Properties of Polymer–Carbon Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_8

Download citation

Publish with us

Policies and ethics