Skip to main content

Electrical and Electronic Application of Polymer–Carbon Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Abstract

Carbon, the most important element in the periodic table, has various structures, such as carbon black, graphite, graphene, fullerenes, carbon nanotubes, etc. These possess an excellent physical and chemical properties. As a result, they can be used in numerous applications directly or using as a filler in the polymer composite. In this chapter, the application of different carbon materials as specialized fillers in the polymer composites has been discussed. This chapter includes the discussion on various types of carbon fillers, their basic features, their composites with polymers, percolation phenomena for electrically conductive composites and finally electrical and electronic applications of polymer/carbon composites. Applications of polymer/carbon composites in microelectronics, transparent conductive coating and flexible conductors, displays, organic light-emitting diode (OLED), electroluminescent device, photovoltaic device, sensor, actuator, electrode, battery, capacitor, supercapacitor or ultra-capacitor, ESD and EMI shielding, memory devices, field-effect transistor are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scharff P (1998) New carbon materials for research and technology. Carbon 36(5–6):481–486

    Article  CAS  Google Scholar 

  2. Dobrzaski LA (2002) Fundamentals of materials science and physical metallurgy. In: Engineering materials with elements of materials design, WNT, Warsaw

    Google Scholar 

  3. Skoczkowski K (1995) The production technology of carbon-graphite elements. Slask, Katowice, pp 20–177

    Google Scholar 

  4. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  5. Fuente J, Graphenea. http://www.graphenea.com/pages/graphene–usesapplications#.VTnmIiGqqko

  6. Lalwani G, Sitharaman B (2013) Multifunctional fullerene and metallofullerene based nanobiomaterials. Nano LIFE 3(3):1342003 (22 pages)

    Article  CAS  Google Scholar 

  7. Przygocki W, Wlochowicz A (2001) Fullerenes and nanotubes: properties and applications. WNT, Warsaw

    Google Scholar 

  8. Huczko A (2004) Carbon nanotubes. Black diamonds of the twenty-first century, BEL Studio, Warsaw

    Google Scholar 

  9. Zielinski T, Kijenski J (2004) Technical-grade plasma carbon black used as an active modifier of plastics. Chem Ind 83(10):517–521

    CAS  Google Scholar 

  10. Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361

    Article  CAS  Google Scholar 

  11. Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Carbon nanotubes. Advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, Germany, pp 12–61

    Google Scholar 

  12. Mighri F, Huneault MA, Champagne MG (2004) Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in fuel cell application. Polym Eng Sci 44(9):1755–1765

    Article  CAS  Google Scholar 

  13. Njuguma J, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mat 5(11):769–778

    Article  CAS  Google Scholar 

  14. Chakrapani N, Chris J, Matayabas JR, Wakharkar V (2010) Applications of smart polymer composites to integrated circuit packaging. US 20100237513 A1

    Google Scholar 

  15. Chakrapani N, Chris J, Matayabas JR, Wakharkar V (2011) Applications of smart polymer composites to integrated circuit packaging, US 7952212 B2

    Google Scholar 

  16. Lingamneni S, Marconnet AM, Goodson KE (2013) 3D Packaging materials based on graphite nanoplatelet and aluminum nitride nanocomposites. In: Proceedings of the ASME 2013 international mechanical engineering congress & exposition IMECE 2013 13–21 Nov 2013, San Diego, California, USA, Final Paper IMECE 2013-66419

    Google Scholar 

  17. Yeh TH, Chang HY, Liou ST (2012) Flexible printed circuit boards including carbon nanotubes bundle. US 8,164,000 B2

    Google Scholar 

  18. Paik KW (2014) Aligned graphene-epoxy composite B-stage films. http://www.mae.ust.hk/news_n_events/event_n_seminars_details.html?uid=69ca957c-7415-11e3-8838-001cc47a7474

  19. Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Proceedings of the IEEE International Electron Devices Meeting (IEDM’04), pp. 683–686, December 2004

    Google Scholar 

  20. Suh DW (2012) Carbon nanotubes solder composite for high performance interconnect. US 8,100,314 B2

    Google Scholar 

  21. Li J, Lumpp JK (2006) Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In: Proceedings of aerospace conference. IEEE, NJ, 2006, pp 1–6

    Google Scholar 

  22. Lin XC, Lin F (2004) Improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube. In: Proceedings of high density microsystem design and packaging. IEEE, NJ, 2004, pp 382–384

    Google Scholar 

  23. Bullock S, Vanderwlel RW (2012) Electrically conductive polymer compositions containing metal particles and a graphene and methods for production and use thereof. US 8167190 B1

    Google Scholar 

  24. Yim BS, Oh SH, Kim J, Kim J, Kim JM (2012) Characteristics of graphene-filled solderable isotropically conductive adhesive (ICA). Mater Trans 53(3):578–581

    Article  CAS  Google Scholar 

  25. Bertram A, Beasley K, De La Torre W (1992) An overview of navy composite developments for thermal management. Naval Eng J 104:276

    Article  Google Scholar 

  26. Fleming TF, Rwey WC, Proc. SPIE The international society for optical engineering, 1997 (1993) 136–147

    Google Scholar 

  27. Fleming TF, Levan CD, Riley WC (1995) Proceedings technical conference, international electronics packaging conference pp 493–503

    Google Scholar 

  28. Ibrahim AM (1992) SAMPEE electronics conference, pp 556–567

    Google Scholar 

  29. Spicer JWM, Wilson DW, Osinader R, Thomas J, Oni BO (1999) Proc. SPIE—the internal society for optical engineering, 3700: 40

    Google Scholar 

  30. Ebadi-Dehaghani H, Nazempour M (2012) Thermal conductivity of nanoparticles filled polymers. http://cdn.intechopen.com/pdfs-wm/35438.pdf

  31. Yoon YS, Oh MH, Kim AY, Kim N (2012) The development of thermal conductive polymer composites for heat sink. J Chem Chem Eng 6:515–519

    CAS  Google Scholar 

  32. Chiguma J, Johnson E, Shah P, Gornopolskaya N, Jones WE Jr (2013) Thermal diffusivity and thermal conductivity of epoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques. Open J Compos Mater 3:51–62

    Article  CAS  Google Scholar 

  33. Smaldone PL (1995) 27th international SAMPE technical conference, pp 819–829

    Google Scholar 

  34. Glatz JJ, Vrable DL, Schmedake T, Johnson C (1992) 6th international SAMPE electronics conference, pp 334–346

    Google Scholar 

  35. Berger M (2012) Graphene sets new record as the most efficient filler for thermal interface materials. http://www.nanowerk.com/spotlight/spotid=24109.php

  36. Khan MFS, Alexander AB (2011) Graphene—based nanocomposites as highly efficient thermal interface materials. https://arxiv.org/ftp/arxiv/papers/1201/1201.0796.pdf

  37. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotubes filler for epoxy composites. Adv Mater 20:4740–4744

    Article  CAS  Google Scholar 

  38. Yu A, Ramesh P, Itkis ME, Elena B, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Article  CAS  Google Scholar 

  39. Wu TY, Lin JC et al (2014) Aligned graphene sheets-polymer compositeand method for manufacturing the same. US 20140097380 A1

    Google Scholar 

  40. Balandin AA (2013) Graphene based thermal interface materials and methods of manufacturing the same. US 20140120399 A1

    Google Scholar 

  41. Nanocarbons and nanocarbon-filled polymer composites for electronic thermal management materials. School of Chemical and Process Engineering, Institute for Materials Research. http://www.engineering.leeds.ac.uk/imr/research/carbon/nanocarbons.shtml

  42. Okoth MO (2010) Synthesis of thermal interface materials made of metal decorated carbon nanotubes and polymers. Dissertation, Texas A&M University

    Google Scholar 

  43. Arora H, Matayabas Jr JC (2014) Thermal interface material composition including polymeric matrix and carbon filler. US 8920919 B2

    Google Scholar 

  44. Heimann M, Wirts-Ruetters M, Boehme B, Wolter KJ (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Proceedings of the 58th electronic components and technology conference (ECTC’08), May 2008, pp 1731–1736

    Google Scholar 

  45. Matthias H, Boehme B, Sebastian S, Wirts-Ruetters M, Wolter KJ (2009) CNTs—a comparable study of CNT-filled adhesives with common materials. In: Proceedings of the 59th electronic components and technology conference (ECTC’09), San Diego, California, USA, May 2009, pp 1871–1878

    Google Scholar 

  46. Mir IA, Kumar D (2012) Carbon nanotube-filled conductive adhesives for electronic applications. Nanosci Meth 1:183–193

    Article  CAS  Google Scholar 

  47. Adams JT, Yost BA (1991) Matrix filled with three-dimensional arrangement of carbon fibers, thermoplastic, thermosetting or elastomeric resins; bonding electronic components US 5026748 A

    Google Scholar 

  48. Transparent conducting film From Wikipedia. http://en.wikipedia.org/wiki/Transparent_conducting_film

  49. Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotech 2(4):207–208

    Article  CAS  Google Scholar 

  50. Dettlaff-Weglikowska U, Kaempgen M, Hornbostel B, Skakalova V, Wang J, Liang J, Roth S (2006) Conducting and transparent SWNT/polymer composites. Phys Stat Sol (b) 243:3440–3444

    Article  CAS  Google Scholar 

  51. Ferrer-Anglada N, Kaempgen M, Skakalova V, Dettlaf-Weglikowska U, Roth S (2004) Synthesis and characterization of carbon nanotube-conducting polymer thin films. Diamond Relat Mater 13:256–260

    Article  CAS  Google Scholar 

  52. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  CAS  Google Scholar 

  53. De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland JJ, Scardaci V, Joimel J, Coleman JN (2009) Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3:714–720

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X et al (2009) Ahybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348

    Article  CAS  Google Scholar 

  55. Liuid crystal display. From Wikipedia. http://en.wikipedia.org/wiki/Liquid-crystal_display

  56. LED display. From Wikipedia. http://en.wikipedia.org/wiki/LED_display

  57. John (2010) Nano C Inc., Liquid crystal display (LCD)-working. http://www.circuitstoday.com/liquid-crystal-displays-lcd-working

  58. Eren San S, Okutan M, Köysal O, Yerli Y (2008) Carbon nanoparticles in nematic liquid crystals. Chin Phys Lett 25(1):212

    Article  Google Scholar 

  59. Qi H, Hegmann T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18:3288–3294

    Article  CAS  Google Scholar 

  60. OLED. From Wikipedia. http://en.wikipedia.org/wiki/OLED

  61. Moni-X Ltd. (2005) Organic light emitting diode (OLED). http://qxwujoey.tripod.com/oled.htm

  62. Eda G, Unalan HE, Rupesinghe NL, Amaratunga GAJ, Chhowalla M (2008) Field emission from graphene based composite thin films. Appl Phys Lett 93:233502–233503

    Article  CAS  Google Scholar 

  63. Verma VP, Das S, Lahiri I, Choi W (2010) Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl Phys Lett 96:203108 / 1–3

    Article  CAS  Google Scholar 

  64. Woo HS, Czerw R, Webster S, Carroll DL, Ballato J, Strevens AE, O’Brien D, Blau WJ (2000) Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl Phys Lett 77(9):1393–1395

    Article  CAS  Google Scholar 

  65. Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477

    Article  CAS  PubMed  Google Scholar 

  66. Yu Z, Niu X, Liu Z, Pei J (2011) Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater 23:3867–3994

    Article  Google Scholar 

  67. Ou ECW, Hu L, Raymond GCR, Soo OK, Pan J, Zheng Z, Park Y, Hecht D, Irvin G, Drzaic P et al (2009) Surface-modified nanotube anodes for high performance organic light-emitting diode. ACS Nano 3:2258–2264

    Article  CAS  PubMed  Google Scholar 

  68. Singh JP, Saha U, Jaiswal R, Anand RS, Srivastava A, Goswami TH (2014) Enhanced polymer light-emitting diode property using fluorescent conducting polymer-reduced graphene oxide nanocomposite as active emissive layer. J Nanopart Res 16:1–20

    Google Scholar 

  69. Luo W, Chen W, Leng C, Huang D, Zhang Y, Yang J, Li Z, Shi H, Du C (2014) Graphene composite anode for flexible polymer light emitting diode. In: Proceedings SPIE 9272, optical design and testing VI, 927206, November 5, 2014

    Google Scholar 

  70. Lin CH, Chen KT, Ho JR, Cheng JWJ, Tsiang RCC (2012) PEDOT:PSS/graphene nanocomposite hole-injection layer in polymer light-emitting diodes. J Nanotech 2012:1–7

    Article  CAS  Google Scholar 

  71. Electroluminescence. From Wikipedia. http://en.wikipedia.org/wiki/Electroluminescence

  72. Xu Z, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118

    Article  CAS  Google Scholar 

  73. Hu B, Li D, Manandharam P, Fan Q, Kasilingam D, Calvert P (2012) CNT/conducting polymer composite conductors impart high flexibility to textile electroluminescent devices. J Mater Chem 22:1598–1605

    Article  CAS  Google Scholar 

  74. Photovoltaics. From Wikipedia. http://en.wikipedia.org/wiki/Photovoltaics

  75. Edward LO (2008) PV cell—working principle and applications. http://cd1.edb.hkedcity.net/cd/science/physics/NSS/Energy01_Dec08/PhotoVoltaicsCells.pdf

  76. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271

    Article  Google Scholar 

  77. Bhattacharyya S, Kymakis E, Amaratunga GAJ (2004) Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater 16:4819–4823

    Article  CAS  Google Scholar 

  78. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285

    Article  CAS  Google Scholar 

  79. Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98:084314

    Article  CAS  Google Scholar 

  80. Li C, Chen Y, Wang YIZ, Chhowalla M, Mitra S (2007) A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17:2406–2411

    Article  CAS  Google Scholar 

  81. Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptortype photovoltaic devices. Appl Phys Lett 88:093106

    Article  CAS  Google Scholar 

  82. Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93:1764–1768

    Article  CAS  Google Scholar 

  83. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  CAS  PubMed  Google Scholar 

  84. Alley NJ, Liao KS, Andreoli E, Dias S, Dillon EP, Orbaek AW, Barron AR, Byrne HJ, Curran SA (2012) Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics. Synth Met 162(1–2):95–101

    Article  CAS  Google Scholar 

  85. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930

    Article  CAS  Google Scholar 

  86. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558

    Article  CAS  Google Scholar 

  87. Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305 / 1–3

    Article  CAS  Google Scholar 

  88. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution processed graphene transparent electrodes. Appl Phys Lett 92:263302 / 1–3

    Article  CAS  Google Scholar 

  89. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN (2014) In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells. Sci Rep 4. https://doi.org/10.1038/srep05305

  90. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Article  CAS  PubMed  Google Scholar 

  91. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution processable grapheme oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    Article  CAS  PubMed  Google Scholar 

  92. Valentini L, Cardinali M, Bon SB, Bagnis D, Verdejo R, Lopez Manchado MA, Kenny JM (2010) Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem 20:995–1000

    Article  CAS  Google Scholar 

  93. Wang X, Zhi L, Müllen K (2008) Transparent, conductive grapheNe electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  CAS  PubMed  Google Scholar 

  94. Su Q (2012) Graphene based electrode materials for solar cell and electrochemical oxygen reduction. Ph.D. Dissertation, Max-Planck Institute for Polymer Research

    Google Scholar 

  95. Saranya K, Rameez Md, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—an overview. Eur Polym J 66:207–227

    Article  CAS  Google Scholar 

  96. Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M (2012) Influence of polymer/fullerene-graphene structure on organic polymer solar devices. Integr Ferroelect 137(1):1–9

    Article  CAS  Google Scholar 

  97. Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, Li LJ (2012) Layer-by-layer grapheme/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6(6):5031–5039

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M, Jiang K, Chen W (2011) Organic photovoltaic devices based on an acceptor of solution-processable functionalized graphene. J Nanosci Nanotechnol 11(11):9432–9438

    Article  CAS  PubMed  Google Scholar 

  99. Brabec CJ, Padinger F, Hummelen JC, Janssen RAJ, Sariciftci NS (1999) Realization of large area flexible fullerene-conjugated polymer photocells: a route to plastic solar cells. Synth Met 102(1–3):861–864

    Article  CAS  Google Scholar 

  100. Fromherz T, Padinger F, Gebeyehu D, Brabec C, Hummelen JC, Sariciftci NS (2000) Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives. Sol En Mat 63(1):61–68

    Article  CAS  Google Scholar 

  101. Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118(1–3):1–9

    Article  CAS  Google Scholar 

  102. Sensor. From Wikipedia. http://en.wikipedia.org/wiki/Sensor

  103. Ansari S, Giannelis EP (2009) Functionalized graphene sheet—Poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Pt B Polym Phys 47:888–889

    Article  CAS  Google Scholar 

  104. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    Article  CAS  PubMed  Google Scholar 

  105. Xue R, Kang TF, Lu LP, Cheng SY (2013) Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides. Anal Lett 46(1):131–141

    Article  CAS  Google Scholar 

  106. Zhu J, Wei S, Ryu J, Guo Z (2011) Strain-sensing elastomer/carbon nanofiber “metacomposites”. J Phys Chem C 115:13215–13222

    Article  CAS  Google Scholar 

  107. Li L, Li J, Lukehart CM (2008) Graphitic carbon nanofiber-poly (acrylate) polymer brushes as gas sensors. Sens Actuators B Chem 130:783–788

    Article  CAS  Google Scholar 

  108. Jang J, Bae J (2007) Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens Actuators B Chem 122:7–13

    Article  CAS  Google Scholar 

  109. Harun FKC, Jumadi AM, Mahmood NH (2011) Carbon black polymer composite gas sensor for electronic nose. Int J Sci Eng Res 2(11):1–7

    Google Scholar 

  110. Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer–carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29(10):714–719

    Article  CAS  PubMed  Google Scholar 

  111. Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128(5):1412–1413

    Article  CAS  PubMed  Google Scholar 

  112. Hernández-López S, Vigueras-Santiago E, Mora MM, Mancilla JRF, Contreras EAZ (2013) Cellulose-based polymer composite with carbon black for tetrahydrofuran sensing. Int J Polym ScI 2013:1–7

    Article  CAS  Google Scholar 

  113. Singha DK, Mahata P (2015) Luminescent coordination polymer–fullerene composite as a highly sensitive and selective optical detector for 2,4,6-trinitrophenol (TNP). RSC Adv 5:28092–28097

    Article  CAS  Google Scholar 

  114. Isoda T, Sato H et al (2011) Evalution of immunoglobulne sensing function using a fullerene- composite-polymer-coated sensor electrode. Sens Mater 23(4):237–249

    CAS  Google Scholar 

  115. Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ, Fan KC (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sens 10(4):3597–3610

    Article  CAS  Google Scholar 

  116. Seah TH, Pumera M (2011) Platelet graphite nanofibers/soft polymer composites for electrochemical sensing and biosensing. Sens Actuators B: Chemical 156(1):79–83

    Article  CAS  Google Scholar 

  117. Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sens 14:868–876

    Article  CAS  Google Scholar 

  118. Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2012) One-pot synthesis of conducting graphene-polymer composites and their strain sensing application. Nanoscale 4(4):1258–1262

    Article  CAS  PubMed  Google Scholar 

  119. Actuator. From Wikipedia. http://en.wikipedia.org/wiki/Actuator

  120. Mohamadi S, Sanjani NS, Mahdavi H (2011) Functionalization of graphene sheets via chemically grafting of PMMA chains through in situ polymerization. J Macromol Sci Pt A 48(8):577–582

    Article  CAS  Google Scholar 

  121. Liang J, Huang L, Li N, Huang Y, Wu Y, Fang S, Oh J, Kozlov M, Ma Y, Li F, Baughman R, Chen Y (2012) Electromechanical actuator with controllable motion, fast response rate, and highfrequency resonance based on graphene and polydiacetylene. ACS Nano 6(5):4508–4519

    Article  CAS  PubMed  Google Scholar 

  122. Ahir SV, Terentjev EM (2006) Fast relaxation of carbon nanotubes in polymer composite actuators. Phys Rev Lett 96(13):133902

    Article  CAS  PubMed  Google Scholar 

  123. Chen L, Liu C, Liu K, Meng C, Hu C, Wang J, Fan S (2011) High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3):1588–1593

    Article  CAS  PubMed  Google Scholar 

  124. Wang XL, Oh IK (2010) Sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) and fullerene composites for ionic polymer actuators. J Nanosci Nanotechnol 10(5):3203–3206

    Article  CAS  PubMed  Google Scholar 

  125. Jung JH, Vadahanambi S, Oh IK (2010) Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Compos Sci Technol 70(4):584–592

    Article  CAS  Google Scholar 

  126. Ghaffari Zhou MY, Lin M, Koo CM, Zhang QM (2014) High electromechanical reponses of ultra-high-density aligned nano-porous microwave exfoliated graphite oxide/polymer nano-composites ionic actuators. Int J Smart Nano Mater 5(2):114–122

    Article  CAS  Google Scholar 

  127. Muralidharan MN, Ansari S (2013) Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Adv Mat Lett 4(12):927–932

    Article  CAS  Google Scholar 

  128. Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M (2010) Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J Phys Chem 114(21):9659–9663

    CAS  Google Scholar 

  129. Sen I, Seki Y, Sarikanat M, Cetin L, Gurses BQ, Ozdemir O, Yilmaz OC, Sever K, Akar E, Mermer O (2015) Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Compos Part B Eng 69:369–377

    Article  CAS  Google Scholar 

  130. Yang W, Choi H, Choi S, Jeon M, Lee SY (2012) Carbon nanotube–graphene composite for ionic polymer actuators. Smart Mater Struct 21(5):055012

    Article  CAS  Google Scholar 

  131. Loomis J, King B, Burkhead T, Xu P, Bessler N, Terentjev E, Panchapakesan B (2012) Graphene-nanoplatelet-based photomechanical actuators. Nanotechnol 23(4):045501

    Google Scholar 

  132. Electrode. From Wikipedia. http://en.wikipedia.org/wiki/Electrode

  133. Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J et al (2009) Fabrication of graphene / polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 7:1745–1752

    Article  CAS  Google Scholar 

  134. Li H, Chen J, Han S, Niu W, Liu X, Xu G (2009) Electrochemiluminescence from tris(2,2-bipyridyl)ruthenium(II)-graphene-nafion modified electrode. Talanta 79:165–170

    Article  CAS  PubMed  Google Scholar 

  135. Kim JY, Kim M, Choi JH (2003) Characterization of light emitting devices based on a single-walled carbon nanotube–polymer composite. Synth Met 139(3):565–568

    Article  CAS  Google Scholar 

  136. Kauffmann JM, Linders CR, Patriarche GJ, Smyth MR (1988) A comparison of glassy-carbon and carbon-polymer composite electrodes incorporated into electrochemical detection systems for high-performance liquid chromatography. Talanta 35(3):179–182

    Article  CAS  PubMed  Google Scholar 

  137. Rakhi RB, Chen W, Alshareef HN (2012) Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J Mater Chem 22:5177–5183

    Article  CAS  Google Scholar 

  138. Chang J, Najeeb CK, Lee JH, Kim JH (2011) Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution. Langmuir 27(11):7330–7336

    Article  CAS  PubMed  Google Scholar 

  139. Calixto CMF, Mendes RK, Oliveira AC, Ramos LA, Cervini P, Cavalheiro ETG (2007) Development of graphite-polymer composites as electrode materials. Mater Res 10(2):1439–1516

    Article  Google Scholar 

  140. Perween M, Parmar DB, Bhadu GR, Srivastava DN (2014) Polymer–graphite composite: a versatile use and throw plastic chip electrode. Analyst 139:5919–5926

    Article  CAS  PubMed  Google Scholar 

  141. Coffey B, Madsen PV, Poehler TO, Searson PC (1995) High charge density conducting polymer/graphite fiber composite electrodes for battery applications. J Electrochem Soc 142(2):321–325

    Article  CAS  Google Scholar 

  142. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108

    Article  CAS  Google Scholar 

  143. Lithium ion battery. From Wikipedia. http://en.wikipedia.org/wiki/Lithium-ion_battery

  144. Brain M, How Lithium-ion Batteries Work. http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm

  145. Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, Xiao Q, Zhan H, Liu J, Wang D (2012) Polymer—graphene nanocomposites as ultrafast-charge and discharge cathodes for rechargeable Lithium batteries. Nano Lett 12:22205–22211

    Google Scholar 

  146. Lee H, Yoo JK, Park JH, Kim JH, Kang K, Jung YS (2012) A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv Energ Mater 2(8):976–982

    Article  CAS  Google Scholar 

  147. Fauteux D (1993) Carbon/polymer composite electrode for use in a lithium battery. EP0528557A1

    Google Scholar 

  148. Sivakkumar SR, Kim DW (2007) Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J Electrochem Soc 154(2):A134–A139

    Article  CAS  Google Scholar 

  149. Veeraraghavan B, Paul J, Haran B, Popov B (2002) Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J Power Sour 109:377–387

    Article  CAS  Google Scholar 

  150. Li S, Shu K, Zhao C, Wang C, Guo Z, Wallace G, Liu HK (2014) One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl Mater Interfaces 6(19):16679–16686

    Article  CAS  PubMed  Google Scholar 

  151. Chen L, Zhang M, Wei W (2013) Graphene-based composites as cathode materials for lithium ion batteries. J Nanomat 2013: Article ID 940389, 8 pages

    Google Scholar 

  152. Capacitor. From Wikipedia. http://en.wikipedia.org/wiki/Capacitor

  153. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996

    Article  CAS  Google Scholar 

  154. Liao WC, Liao FS, Tsai CT, Yang YP (2012) Preparation of activated carbon for electric double layer capacitors. China Steel Tech Rep 25:36–41

    Google Scholar 

  155. Luo X, Chang DDL (2001) Carbon fiber/ polymer matrix composites as capacitor. Compos Sci Technol 61:885–888

    Article  CAS  Google Scholar 

  156. Li S, Zhao Y, Zhang Z, Tang H (2014) Preparation and characterization of epoxy/carbon fiber composite capacitors. Polym Compos. https://doi.org/10.1002/pc.23050

    Article  Google Scholar 

  157. Tien CP, Teng H (2010) Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J Power Sour 195(8):2414–2418

    Article  CAS  Google Scholar 

  158. Huang L, Li C, Shi G (2014) High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J Mater Chem A 2:968–974

    Article  CAS  Google Scholar 

  159. Sangermano M (2014) Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and uv–induced bonding. http://www.radtechreport.com/2014_1ssue4_sangermano.html

  160. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible grapheme/ polyaniline nanofibre composite film. ACS Nano 4:1963–1970

    Article  CAS  PubMed  Google Scholar 

  161. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2009) Graphene oxide doped polyaniline for super capacitors. Electrochem Commun 11:1158–1161

    Article  CAS  Google Scholar 

  162. Yan J, Wei T, Fan ZJ, Qian WZ, Zhang ML, Shen XD, Wei F (2010) Preparation of graphene nanosheets/ carbon nanotubes/ polyaniline composite as electrode material for supercapaitors. J Power Sour 195:3041–3045

    Article  CAS  Google Scholar 

  163. Lee KYT, Naguib H, Lian K (2014) Flexible multiwall carbon nano-tubes/conductive polymer composite electrode for supercapacitor applications. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Paper No. SMASIS2014-7735, pp. V001T01A033; 7 pages. https://doi.org/10.1115/smasis2014-7735

  164. Zhamu A, Jang BZ (2013) Method of producing graphite-carbon composite electrodes for supercapacitors. US 8,497,225 B2

    Google Scholar 

  165. Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43:773–782

    Article  CAS  Google Scholar 

  166. Liu Q, Nayfeh O, Nayfeh MH, Yau ST (2013) Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energ 2:133–137

    Article  CAS  Google Scholar 

  167. Electrostatic discharge. From Wikipedia. http://en.wikipedia.org/wiki/Electrostatic_discharge

  168. Electromagnetic Shielding From Wikipedia. http://en.wikipedia.org/wiki/Electromagnetic_shielding

  169. Electromagnetic Interference. From Wikipedia. http://en.wikipedia.org/wiki/Electromagnetic_interference

  170. Bhadra S, Singha NK, Khastgir D (2008) Semi-conductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: studies on mechanical, thermal, processability, electrical and EMI shielding properties. Polym Eng Sci 48:995–1006

    Article  CAS  Google Scholar 

  171. Bhadra S, Singha NK, Khastgir D (2009) Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr Appl Phys 9:396–403

    Article  Google Scholar 

  172. Lee J, Yang SB, Jung HT (2009) Carbon nanotubes–polypropylene nanocomposites for electrostatic discharge applications. Macromol 42(21):8328–8334

    Article  CAS  Google Scholar 

  173. Kim S, Kim S, Lee C (2012) Electrostatic discharge polymer filler containing carbon nanotube enclosed with thermoplatic resin layer and manufacturing method thereof. US 20120298925 A1

    Google Scholar 

  174. Boday DJ, Gentrupa MH, Iben IET (2014) Low viscosity electrostatic discharge (ESD) dissipating adhesive substantially free of agglomerates. US 8673462 B2

    Google Scholar 

  175. Poosal A, Kittipong Hrimchum K, Aussawasathien D, Pentrakoon D, The Effect of oxygen-plasma treated graphene nanoplatelets upon the properties of multiwalled carbon nanotube and polycarbonate hybrid nanocomposites used for electrostatic dissipative applications. J Nanomater 2015: 1–9, Article ID 470297

    Google Scholar 

  176. Liang JJ, Wang Y, Huang Y, Ma YF, Liu ZF, Cai FM, Zhang CD, Gao HJ, Chen YS (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925

    Article  CAS  Google Scholar 

  177. Goyal RK, Kadam A (2010) Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv Mat Lett 1(2):143–147

    Article  CAS  Google Scholar 

  178. Yang Y, Guptal MC, Dudley KL, Lawrence RW (2007) Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. J Nanosci Nanotechnol 7(2):549–554

    Article  CAS  PubMed  Google Scholar 

  179. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromol 42:5251–5255

    Article  CAS  Google Scholar 

  180. Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897–2903

    Article  CAS  Google Scholar 

  181. Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos: Part B 30:227–231

    Article  Google Scholar 

  182. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  CAS  PubMed  Google Scholar 

  183. Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293(7):621–630

    Article  CAS  Google Scholar 

  184. Morari C, Balan I, Pintea J, Chitanu E, Iordache I (2011) Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog Electromagnet Res M 21:93–104

    Article  Google Scholar 

  185. Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl Mater Interface 5(11):4712–4724

    Article  CAS  Google Scholar 

  186. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898

    Article  CAS  Google Scholar 

  187. Memory Devices. http://www.tutorialspoint.com/computer_logical_organization/memory_devices.htm

  188. Mamo MA, Sustaita AO, Tetana ZN, Coville NJ, Hümmelgen IA (2013) Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices. Nanotechnol 24(12):125203

    Article  CAS  Google Scholar 

  189. Sustaita AO, Mamo MA, Segura-Cardenas E, Reyes-Reyes M, López-Sandova R, Coville NJ, Hümmelgen IA (2013) Functionalized spherical carbon nanostructure/poly(vinylphenol) composites for application in low power consumption write-once-read-many times memories. J Nanosci Nanotechnol 13:1–7

    Article  CAS  Google Scholar 

  190. Machado WS, Mamo MA, Coville NJ, Hümmelgen IA (2012) The OFF to ON switching time and ON state consolidation in write-once-read-many-times memory devices based on doped and undoped carbon-sphere/polymer composites. Thin Solid Films 520(13):4427–4431

    Article  CAS  Google Scholar 

  191. Pradhan B, Batabyal SK, Pal AJ (2006) Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J Phys Chem B 110(16):8274–8277

    Article  CAS  PubMed  Google Scholar 

  192. Jo H, Ko J, Lim JA, Chang HJ, Kim YS (2013) Organic nonvolatile resistive switching memory based on molecularly entrapped fullerene derivative within a diblock copolymer nanostructure. Macromolecular Rapid Commun 34(4):355–361

    Article  CAS  Google Scholar 

  193. Khan MA, Bhansali US, Cha D, Alshareef HN (2013) All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends. Adv Funct Mater 23:2145–2152

    Article  CAS  Google Scholar 

  194. Kanwal A, Chhowalla M (2006) Stable, three layered organic memory devices from C60 molecules and insulating polymers. Appl Phys Lett 89:203103

    Article  CAS  Google Scholar 

  195. Son DI, Shim JH, Park DH, Jung JH, Lee JM, Park WI, Kim TW, Choi WK (2011) Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnol 22(29):295203

    Article  CAS  Google Scholar 

  196. Mamo MA, Sustaita AO, Coville NJ, Hümmelgen IA (2013) Polymer composite of poly(vinyl phenol)-reduced graphene oxide reduced by vitamin C in low energy consuming write-once–read-many times memory devices. Org Electron 14(1):175–181

    Article  CAS  Google Scholar 

  197. Kafy A, Sadasivuni KK, Kim HC, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931

    Article  CAS  PubMed  Google Scholar 

  198. Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX (2010) Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Appl Mater 22(15):1731–1735

    CAS  Google Scholar 

  199. Fuel Cell. From Wikipedia. http://en.wikipedia.org/wiki/Fuel_cell

  200. Fuel Cell Principle. http://www.nedstack.com/technology/fuel-cell-principle

  201. Dweiri R, Sahari J (2007) Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). J Power Sour 171(2):424–432

    Article  CAS  Google Scholar 

  202. Xia LG, Li AJ, Wang WQ, Yin Q, Lin H, Zhao YB (2008) Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate. J Power Sour 178(1):363–367

    Article  CAS  Google Scholar 

  203. Cunningham BD, Baird DG (2007) Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer. J Power Sour 168(2):418–425

    Article  CAS  Google Scholar 

  204. Kakati BK, Deka D (2007) Differences in physico-mechanical behaviors of resol (e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell. Electrochim Acta 52:7330–7336

    Article  CAS  Google Scholar 

  205. Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sour 193(2):523–529

    Article  CAS  Google Scholar 

  206. Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SH, Xie XF, Hsiao YH (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sour 185(2):1225–1232

    Article  CAS  Google Scholar 

  207. Mathur RB, Dhakate SR, Gupta DK, Dhami TL, Aggarwal RK (2008) Effect of different carbon fillers on the properties of graphite composite bipolar plate. J Mater Process Technol 203(1–3):184–192

    Article  CAS  Google Scholar 

  208. Song LN, Xiao M, Meng YZ (2006) Electrically conductive nanocomposites of aromatic polydisulfide/expanded graphite. Compos Sci Technol 66(13):2156–2162

    Article  CAS  Google Scholar 

  209. Du C, Ming P, Hou M, Fu J, Shen Q, Liang D, Fu Y, Luo X, Shao Z, Yi B (2010) Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sour 195(3):794–800

    Article  CAS  Google Scholar 

  210. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998

    Article  CAS  Google Scholar 

  211. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53:6209–6214

    Article  CAS  Google Scholar 

  212. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    Article  CAS  Google Scholar 

  213. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64(15):2309–2316

    Article  CAS  Google Scholar 

  214. Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43:3331–3336

    Article  CAS  Google Scholar 

  215. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045

    Article  CAS  Google Scholar 

  216. Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    Article  CAS  Google Scholar 

  217. Sun J, Gao L (2001) Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon 41(5):1063–1068

    Article  CAS  Google Scholar 

  218. Liu Y, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon 43(1):47–52

    Article  CAS  Google Scholar 

  219. Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3–4):548–554

    Article  CAS  Google Scholar 

  220. Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45(14):2810–2822

    Article  CAS  Google Scholar 

  221. Cele NP, Ray SS (2009) Recent progress on nafion-based nanocomposite membranes for fuel cell applications. Macromol Mater Eng 294(11):719–738

    Article  CAS  Google Scholar 

  222. Liu YH, Yi B, Shao ZG, Xing D, Zhang H (2006) Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9(7):A356–A359

    Article  CAS  Google Scholar 

  223. Liu YH, Yi B, Shao ZG, Wang L, Xing D, Zhang H (2007) Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications. J Power Sour 163(2):807–813

    Article  CAS  Google Scholar 

  224. Thomassin JM, Kollar J, Caldarella G, Germain A, Jerome R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membrane Sci 303(1–2):252–257

    Article  CAS  Google Scholar 

  225. Wang L, Xing DM, Zhang HM, Yu HM, Liu YH, Yi BL (2008) MWCNTs reinforced Nafion® membrane prepared by a novel solution-cast method for PEMFC. J Power Sour 176(1):270–275

    Article  CAS  Google Scholar 

  226. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composite. J Mater Sci 42(10):3408–3418

    Article  CAS  Google Scholar 

  227. Chen WF, Wu JS, Kuo PL (2008) Poly(oxyalkylene)diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites: synthesis, water state, and conductivity. Chem Mater 20(18):5756–5757

    Article  CAS  Google Scholar 

  228. Asgari MS, Nikazar M, Molla-abbasi P, Hasani-Sadrabadi MM (2013) Nafion®/histidine functionalized carbon nanotube: high-performance fuel cell membranes. Int J Hydrogen Energy 38(14):5894–5902

    Article  CAS  Google Scholar 

  229. Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalied carbon nanotubes. Angew Chem Int Ed 47(14):2653–2656

    Article  CAS  Google Scholar 

  230. Kannan R, Aher PP, Palaniselvam T, Kurungot S, Kharul UK, Pillai VK (2010) Artificially designed membranes using phosphonated multiwall carbon nanotube–polybenzimidazole composites for polymer electrolyte fuel cells. J Phys Chem Lett 1(14):2109–2113

    Article  CAS  Google Scholar 

  231. Cele NP, Ray SS, Pillai SK, Ndwandwe Nonjola MS, Sikhwivhilu L (2009) Carbon nanotubes based nafion composite membranes for fuel cell applications. Fuel Cells 10(1):64–71

    Google Scholar 

  232. Tasaki K, DeSousa R, Wang H, Gasa J, Venkatesan A, Pugazhendhi P, Loutfy RO (2006) Fullerene composite proton conducting membranes for polymer electrolyte fuel cells operating under low humidity conditions. J Membrane Sci 281(1–2):570–580

    Article  CAS  Google Scholar 

  233. DeSousa R, Venkatesan A, Tasaki K, Wang H, Gasa J (2006) Fullerenes and their composites for proton conducting membranes in polymer electrolyte fuel cells. ECS Trans 1(6):175–181

    Article  CAS  Google Scholar 

  234. Kumar R, Xu C, Scott K (2012) Graphite oxide/Nafion composite membranes for polymer electrolyte fuelcells. RSC Adv 2:8777–8782

    Article  CAS  Google Scholar 

  235. Xu C, Cao Y, Kumar R, Wu X, Wang X, Scott K (2011) A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359–11364

    Article  CAS  Google Scholar 

  236. Lee DC, Yang HN, Park SH, Kim WJ (2014) Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J Membrane Sci 452(15):20–28

    Article  CAS  Google Scholar 

  237. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115(42):20774–20781

    Article  CAS  Google Scholar 

  238. Field effect transistor. From wikipedia. http://en.wikipedia.org/wiki/Field-effect_transistor

  239. Field Effect Transistors (FET). http://www9.dw–world.de/rtc/infotheque/semiconamps/semiconductor_amps4.html

    Google Scholar 

  240. Schie SP, Fröhlich N, Held M, Gannott F, Schweiger M, Forster M, Scherf U, Zaumseil J (2015) Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl Mater Interfaces 7(1):682–689

    Article  CAS  Google Scholar 

  241. Chua CL, Yeoh KH, Woon KL (2014) Hybrid carbon nanotube/polymer heterointerface organic field effect transistor. Thin Solid Films 556(1):495–498

    Article  CAS  Google Scholar 

  242. Derenskyi V, Gomulya W, Rios JMS, Fritsch M, Fröhlich N, Jung S, Allard S, Bisri SZ, Gordiichuk P, Herrmann A, Scherf U, Loi MA (2014) Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio. Adv Mater 26:5969–5975

    Article  CAS  PubMed  Google Scholar 

  243. Yasin M, Tauqeer T, Rahman HU, Karimov KS, San SE, Tunc AV (2015) Polymer-fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arabian J Sci Eng 40(1):257–262

    Article  CAS  Google Scholar 

  244. Marjanović N, Singh TB, Dennler G, Günes S, Neugebauer H, Sariciftci NS, Schwödiauer R, Bauer S (2006) Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends. Org Electron 7(4):188–194

    Article  CAS  Google Scholar 

  245. Gemayel ME, Haar S, Liscio F, Schlierf A, Melinte G, Milita S, Ersen O, Ciesielski A, Palermo V, Samorì P (2014) Leveraging the ambipolar transport in polymeric field-effect transistors via blending with liquid-phase exfoliated graphene. Adv Mater 26:4814–4819

    Article  PubMed  CAS  Google Scholar 

  246. Huang J, Hines DR, Jung BJ, Bronsgeest MS, Tunnell A, Ballarotto V, Katz HE, Fuhrer MS, Williams ED, Cumings J (2011) Polymeric semiconductor/graphene hybrid field-effect transistors. Org Electron 12:1471–1476

    Article  CAS  Google Scholar 

  247. Inagaki M, Yang Y, Kang F (2012) Carbon nano fibres prepared via electrospinning. Adv Mat 24(19):2547–2566

    Article  CAS  Google Scholar 

  248. Carbon black properties (2010). http://www.asahicarbon.co.jp/global_site/product/cb/characteristic.html

  249. Conductive carbon black. Turning electrically conductive plastics into products. http://www.premixgroup.com/conductive-compounds/conductive-carbon-black

  250. Prabhu L (2014) More effective cooling with PLANSEE’s heat spreaders. http://www.plansee.com/en/Products-Heat-sinks-Heat-spreaders-495.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafizur Rahaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhadra, S., Rahaman, M., Noorunnisa Khanam, P. (2019). Electrical and Electronic Application of Polymer–Carbon Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_12

Download citation

Publish with us

Policies and ethics