Skip to main content

Arsenic Exposure and Reproductive Toxicity

  • Chapter
  • First Online:
Arsenic Contamination in Asia

Abstract

A number of epidemiological studies have indicated significant associations between maternal exposure to naturally occurring arsenic and adverse pregnancy outcomes, such as increased spontaneous abortion and infant mortality. Recent studies have also reported arsenic-associated male sexual dysfunctions, such as lower sperm quality. Animal studies suggest that a variety of cell types and systems are involved in such dysfunctions as the targets of arsenic. In vivo and in vitro experiments have shown that arsenic exposure causes defects in oocytes or embryos leading to embryonic growth retardation. Vasculogenesis in placentas and steroidogenesis in ovarian follicular cells are also implicated as the targets of arsenic. Animal studies in males have reported lower sperm quality and defects in the testis, epididymis, and Leydig cells, all of which are pivotal in spermatogenesis, are caused by arsenic exposure. Arsenic-induced changes in the levels of sex hormones in males have also been reported. As a background mechanism, an arsenic-induced increase in the levels of reactive oxygen species (ROS) is shared between males and females. In addition to infant adverse outcomes, late- or adult-onset outcomes of gestational arsenic exposure, which are not obvious at birth, are also reported by epidemiological and animal studies. Furthermore, multigenerational effects of gestational arsenic exposure have emerged as concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dill L, Stander H, Isenhour C. An evaluation of the effect of antenatal antisyphilitic therapy on fetal mortality and on congenital syphilis. Am J Obstet Gynecol. 1940;40(6):965–79.

    Article  Google Scholar 

  2. Saxe JK, Bowers TS, Reid KR. Arsenic. Burlington, MA: Academic Press; 2006.

    Google Scholar 

  3. Ahmad SA, Sayed M, Barua S, Khan MH, Faruquee M, Jalil A, et al. Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect. 2001;109(6):629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milton AH, Smith W, Rahman B, Hasan Z, Kulsum U, Dear K, et al. Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology. 2005;16(1):82–6.

    Article  PubMed  Google Scholar 

  5. Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA, et al. Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol. 2007;165(12):1389–96.

    Article  PubMed  Google Scholar 

  6. Xu L, Yokoyama K, Tian Y, Piao F-Y, Kitamura F, Kida H, et al. Decrease in birth weight and gestational age by arsenic among the newborn in Shanghai, China. Nihon Koshu Eisei Zasshi. 2011;58(2):89–95.

    PubMed  Google Scholar 

  7. Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsieh FI, Hwang TS, Hsieh YC, Lo HC, Su CT, Hsu HS, et al. Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect. 2008;116(4):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu W, Bao H, Liu F, Liu L, Zhu YG, She J, et al. Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environ Health. 2012;11:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meeker JD, Rossano MG, Protas B, Padmanahban V, Diamond MP, Puscheck E, et al. Environmental exposure to metals and male reproductive hormones: circulating testosterone is inversely associated with blood molybdenum. Fertil Steril. 2010;93(1):130–40.

    Article  CAS  PubMed  Google Scholar 

  11. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114(8):1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect. 2012;120(11):1527–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinmaus C, Ferreccio C, Acevedo J, Balmes JR, Liaw J, Troncoso P, et al. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile. Toxicol Appl Pharmacol. 2016;313:10–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith AH, Yunus M, Khan AF, Ercumen A, Yuan Y, Smith MH, et al. Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol. 2013;42(4):1077–86.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dauphine DC, Ferreccio C, Guntur S, Yuan Y, Hammond SK, Balmes J, et al. Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health. 2011;84(6):591–600.

    Article  CAS  PubMed  Google Scholar 

  16. Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, et al. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect. 2013;121(11-12):1306–12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, et al. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health. 2017;16(1):20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hood RD. Effects of sodium arsenite on fetal development. Bull Environ Contam Toxicol. 1972;7(4):216–22.

    Article  CAS  PubMed  Google Scholar 

  19. Baxley M, Hood R, Vedel G, Harrison W, Szczech G. Prenatal toxicity of orally administered sodium arsenite in mice. Bull Environ Contam Toxicol. 1981;26(1):749–56.

    Article  CAS  PubMed  Google Scholar 

  20. Vahter M. Effects of arsenic on maternal and fetal health. Annu Rev Nutr. 2009;29:381–99.

    Article  CAS  PubMed  Google Scholar 

  21. Holson JF, DeSesso JM, Scialli AR, Farr CH. Inorganic arsenic and prenatal development: a comprehensive evaluation for human risk assessment. Arsenic exposure and health effects III. Oxford: Elsevier; 1999. p. 183–90.

    Google Scholar 

  22. Nemec M, Holson J, Farr C, Hood R. Developmental toxicity assessment of arsenic acid in mice and rabbits. Reprod Toxicol. 1998;12(6):647–58.

    Article  CAS  PubMed  Google Scholar 

  23. Dong H, Madegowda M, Nefzi A, Houghten RA, Giulianotti MA, Rosen BP. Identification of small molecule inhibitors of human As (III) S-Adenosylmethionine Methyltransferase (AS3MT). Chem Res Toxicol. 2015;28(12):2419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hood RD, Vedel GC, Zaworotko MJ, Tatum FM, Meeks RG. Uptake, distribution, and metabolism of trivalent arsenic in the pregnant mouse. J Toxicol Environ Health A Curr Issues. 1988;25(4):423–34.

    Article  CAS  Google Scholar 

  25. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci. 1998;44(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  26. Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, et al. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: implications for risk analysis. Reprod Toxicol. 2016;61:28–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Irvine L, Boyer IJ, DeSesso JM. Monomethylarsonic acid and dimethylarsinic acid: developmental toxicity studies with risk assessment. Birth Defects Res B Dev Reprod Toxicol. 2006;77(1):53–68.

    Article  CAS  PubMed  Google Scholar 

  28. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000;74(6):289–99.

    Article  CAS  PubMed  Google Scholar 

  29. Chaineau E, Binet S, Pol D, Chatellier G, Meininger V. Embryotoxic effects of sodium arsenite and sodium arsenate on mouse embryos in culture. Teratology. 1990;41(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  30. Navarro PA, Liu L, Keefe DL. In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse. Biol Reprod. 2004;70(4):980–5.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Liu C, Li D, Yao N, Yuan X, Yu A, et al. Intracellular redox imbalance and extracellular amino acid metabolic abnormality contribute to arsenic‐induced developmental retardation in mouse preimplantation embryos. J Cell Physiol. 2010;222(2):444–55.

    Article  CAS  PubMed  Google Scholar 

  32. Ren K, Li X, Yan J, Huang G, Zhou S, Yang B, et al. Knockdown of p66Shc by siRNA injection rescues arsenite-induced developmental retardation in mouse preimplantation embryos. Reprod Toxicol. 2014;43:8–18.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J Biol Chem. 2003;278(34):31998–2004.

    Article  CAS  PubMed  Google Scholar 

  34. He W, Greenwell RJ, Brooks DM, Calderón-Garciduenas L, Beall HD, Coffin JD. Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion. Toxicol Sci. 2007;99(1):244–53.

    Article  CAS  PubMed  Google Scholar 

  35. Chattopadhyay S, Pal S, Ghosh D, Debnath J. Effect of dietary co-administration of sodium selenite on sodium arsenite-induced ovarian and uterine disorders in mature albino rats. Toxicol Sci. 2003;75(2):412–22.

    Article  CAS  PubMed  Google Scholar 

  36. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith LB, O’Shaughnessy PJ, Rebourcet D. Cell-specific ablation in the testis: what have we learned? Andrology. 2015;3(6):1035–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramaswamy S, Weinbauer GF. Endocrine control of spermatogenesis: role of FSH and LH/ testosterone. Spermatogenesis. 2014;4(2):e996025.

    Article  PubMed  Google Scholar 

  39. Kesari VP, Kumar A, Khan PK. Induction of sperm impairments in mice as a sensitive biomarker of arsenic toxicity. Environ Monit Assess. 2014;186(5):3115–21.

    Article  CAS  PubMed  Google Scholar 

  40. Guvvala PR, Sellappan S, Parameswaraiah RJ. Impact of arsenic(V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice. Environ Sci Pollut Res Int. 2016;23(18):18200–10.

    Article  CAS  PubMed  Google Scholar 

  41. Ferreira M, Matos RC, Oliveira H, Nunes B, Pereira Mde L. Impairment of mice spermatogenesis by sodium arsenite. Hum Exp Toxicol. 2012;31(3):290–302.

    Article  CAS  PubMed  Google Scholar 

  42. Pant N, Kumar R, Murthy RC, Srivastava SP. Male reproductive effect of arsenic in mice. Biometals. 2001;14(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  43. Pant N, Murthy RC, Srivastava SP. Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol. 2004;23(8):399–403.

    Article  CAS  PubMed  Google Scholar 

  44. de Araujo Ramos AT, Diamante MAS, de Almeida Lamas C, Dolder H, de Souza Predes F. Morphological and morphometrical changes on adult Wistar rat testis caused by chronic sodium arsenite exposure. Environ Sci Pollut Res Int. 2017;24(36):27905–12.

    Article  PubMed  CAS  Google Scholar 

  45. Sanghamitra S, Hazra J, Upadhyay SN, Singh RK, Amal RC. Arsenic induced toxicity on testicular tissue of mice. Indian J Physiol Pharmacol. 2008;52(1):84–90.

    PubMed  Google Scholar 

  46. da Silva RF, Borges CDS, de Almeida Lamas C, Cagnon VHA, de Grava Kempinas W. Arsenic trioxide exposure impairs testicular morphology in adult male mice and consequent fetus viability. J Toxicol Environ Health A. 2017;80(19-21):1166–79.

    Article  PubMed  CAS  Google Scholar 

  47. Souza ACF, Marchesi SC, Domingues de Almeida Lima G, Ferraz RP, Santos FC, da SLP M, et al. Effects of sodium arsenite and arsenate in testicular histomorphometry and antioxidants enzymes activities in rats. Biol Trace Elem Res. 2016;171(2):354–62.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Wang M, Piao F, Wang X. Subchronic exposure to arsenic inhibits spermatogenesis and downregulates the expression of ddx3y in testis and epididymis of mice. Toxicol Sci. 2012;128(2):482–9.

    Article  CAS  PubMed  Google Scholar 

  49. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chiou TJ, Chu ST, Tzeng WF, Huang YC, Liao CJ. Arsenic trioxide impairs spermatogenesis via reducing gene expression levels in testosterone synthesis pathway. Chem Res Toxicol. 2008;21(8):1562–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bashandy SA, El Awdan SA, Ebaid H, Alhazza IM. Antioxidant potential of spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male Rats. Oxid Med Cell Longev. 2016;2016:7174351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Iliadou PK, Tsametis C, Kaprara A, Papadimas I, Goulis DG. The Sertoli cell: novel clinical potentiality. Hormones (Athens). 2015;14(4):504–14.

    Article  Google Scholar 

  53. Jana K, Jana S, Samanta PK. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol. 2006;4:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tsutsumi R, Webster NJ. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J. 2009;56(6):729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bourguignon NS, Bonaventura MM, Rodriguez D, Bizzozzero M, Ventura C, Nunez M, et al. Evaluation of sodium arsenite exposure on reproductive competence in pregnant and postlactational dams and their offspring. Reprod Toxicol. 2017;69:1–12.

    Article  CAS  PubMed  Google Scholar 

  56. Adedara IA, Abolaji AO, Awogbindin IO, Farombi EO. Suppression of the brain-pituitary-testicular axis function following acute arsenic and manganese co-exposure and withdrawal in rats. J Trace Elem Med Biol. 2017;39:21–9.

    Article  CAS  PubMed  Google Scholar 

  57. Chang SI, Jin B, Youn P, Park C, Park JD, Ryu DY. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol. 2007;218(2):196–203.

    Article  CAS  PubMed  Google Scholar 

  58. Reddy PS, Rani GP, Sainath SB, Meena R, Supriya C. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol. 2011;25(4):247–53.

    Article  CAS  PubMed  Google Scholar 

  59. Ola-Davies O, Ajani OS. Semen characteristics and sperm morphology of Pistia stratiotes Linn. (Araceae) protected male albino rats (Wistar strain) exposed to sodium arsenite. J Complement Integr Med. 2016;13(3):289–94.

    Article  CAS  PubMed  Google Scholar 

  60. Altoe LS, Reis IB, Gomes M, Dolder H, Pirovani JM. Could vitamin C and zinc chloride protect the germ cells against sodium arsenite? Hum Exp Toxicol. 2017;36(10):1049–58.

    Article  CAS  PubMed  Google Scholar 

  61. Das J, Ghosh J, Manna P, Sinha M, Sil PC. Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett. 2009;187(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  62. Samadder A, Das J, Das S, Khuda-Bukhsh AR. Dihydroxy-isosteviol-methyl-ester, an active biological component of Pulsatilla nigricans, reduces arsenic induced cellular dysfunction in testis of male mice. Environ Toxicol Pharmacol. 2012;34(3):743–52.

    Article  CAS  PubMed  Google Scholar 

  63. Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, et al. Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Sci Rep. 2016;6:32518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alamdar A, Xi G, Huang Q, Tian M, Eqani S, Shen H. Arsenic activates the expression of 3beta-HSD in mouse Leydig cells through repression of histone H3K9 methylation. Toxicol Appl Pharmacol. 2017;326:7–14.

    Article  CAS  PubMed  Google Scholar 

  65. Nohara K, Suzuki T, Okamura K, Matsushita J, Takumi S. Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice. Genes Environ. 2017;39(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Waalkes MP, Ward JM, Liu J, Diwan BA. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol. 2003;186(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, et al. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect. 2016;124(3):336.

    Article  CAS  PubMed  Google Scholar 

  68. Ditzel EJ, Nguyen T, Parker P, Camenisch TD. Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice. Environ Health Perspect. 2016;124(2):201.

    Article  CAS  PubMed  Google Scholar 

  69. Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, et al. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 2018;114:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and microRNAs in cancer. Int J Mol Sci. 2018;19(2):459.

    Article  PubMed Central  CAS  Google Scholar 

  71. Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2011;41(1):79–105.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Howe CG, Gamble MV. Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr Environ Health Rep. 2016;3(3):225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou Y-S, et al. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst. 2004;96(6):466–74.

    Article  CAS  PubMed  Google Scholar 

  74. Skinner MK. Environmental stress and epigenetic transgenerational inheritance. BMC Med. 2014;12(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nohara K, Okamura K, Suzuki T, Murai H, Ito T, Shinjo K, et al. Augmenting effects of gestational arsenite exposure of C3H mice on the hepatic tumors of the F2 male offspring via the F1 male offspring. J Appl Toxicol. 2016;36(1):105–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Nohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udagawa, O., Okamura, K., Suzuki, T., Nohara, K. (2019). Arsenic Exposure and Reproductive Toxicity. In: Yamauchi, H., Sun, G. (eds) Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2565-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2564-9

  • Online ISBN: 978-981-13-2565-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics