Skip to main content

Variability in Monolithic Composite Parts: From Data Collection to FE Analysis

  • Chapter
  • First Online:
Futuristic Composites

Abstract

A main challenge facing the structural applications of composite materials is related to the uncertainty in the material performance due to their inherent variabilities. Structural properties of composites are not only dependent on the manufacturing steps, but also on the constituent materials, reinforcement architecture and design choices. By introducing geometrical variabilities into finite element (FE) model through meta-models, the effect of variations in the composite structure can be studied at different scales. To assure that the FE results are in accordance with the real composite structure, the input parameters of the models must be in agreement with the actual material and its configuration in the structure. In this chapter, a methodology to study and introduce variabilities into a composite structure FE analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davila Y (2015) Multi-scale study of the material-processing coupling for the identification and modelling of variabilities in a composite structure, Ph.D. Thesis: (in English), Université Toulouse III Paul Sabatier,” Université Toulouse 3 Paul Sabatier

    Google Scholar 

  2. Davila Y, Crouzeix L, Douchin B, Collombet F, Grunevald Y-H (2018) Identification and modelling of the in-plane reinforcement orientation variations in a CFRP laminate produced by manual lay-up. Appl Compos Mater 25(3):647–660

    Article  Google Scholar 

  3. Davila Y, Crouzeix L, Douchin B, Collombet F, Grunevald Y-H (2017) Spatial evolution of the thickness variations over a cfrp laminated structure. Appl Compos Mater 24(5):1201–1215

    Article  CAS  Google Scholar 

  4. Davila Y, Crouzeix L, Douchin B, Collombet F, Grunevald Y-H (2013) Quantification of sources of variability in CFRP plates cured in autoclave. In: 19th International conference on composite materials, 2013, pp 250–2567

    Google Scholar 

  5. Philippidis TP, Lekou DJ, Aggelis DG (1999) Mechanical property distribution of CFRP filament wound composites. Compos Struct 45:41–50

    Article  Google Scholar 

  6. Lekou DJ, Philippidis TP (2008) Mechanical property variability in FRP laminates and its effect on failure prediction. Compos Part B Eng 39(7–8):1247–1256

    Article  Google Scholar 

  7. Sriramula S, Chryssanthopoulos MK (2009) Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos Part A Appl Sci Manuf 40(11):1673–1684

    Article  Google Scholar 

  8. Sutherland LS, Shenoi RA, Lewis SM (1999) Size and scale effects in composites: I. Literature review. Compos Sci Technol 59:209–220

    Article  CAS  Google Scholar 

  9. Di Sciuva M, Lomario D (2003) A comparison between Monte Carlo and FORMs in calculating the reliability of a composite structure. Compos Struct 59(1):155–162

    Article  Google Scholar 

  10. Bouhafs M, Sereir Z, Chateauneuf A (2012) Probabilistic analysis of the mechanical response of thick composite pipes under internal pressure. Int J Press Vessel Pip 95:7–15

    Article  Google Scholar 

  11. Hyuk-Chun N (2011) Stochastic finite element analysis of composite plates considering spatial randomness of material properties and their correlations. Steel Compos Struct 11(2):115–130

    Article  Google Scholar 

  12. AFNOR (1998) NF EN 2564: aerospace series. Carbon fibre laminates. Determination of the fibre, resin and void contents

    Google Scholar 

  13. ASTM International (2011) ASTM D3171: standard test methods for constituent content of composite materials

    Google Scholar 

  14. Wildenschild D, Vaz CMP, Rivers ML, Rikard D, Christensen BSB (2002) Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J Hydrol 267(3–4):285–297

    Article  Google Scholar 

  15. Shi L, Wu S (2007) Automatic Fiber orientation detection for sewed carbon fibers. Tsinghua Sci Technol 12(4):447–452

    Article  Google Scholar 

  16. Redon C, Chermant L, Chermant J, Coster M (1999) Automatic image analysis and morphology of fibre reinforced concrete. Cem Concret Compos 21:403–412

    Article  CAS  Google Scholar 

  17. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  CAS  Google Scholar 

  18. Potter KD, Khan B, Wisnom MR, Bell T, Stevens J (2008) Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos Part A Appl Sci Manuf 39(9):1343–1354

    Article  Google Scholar 

  19. Mulle M, Collombet F, Olivier P, Zitoune R, Huchette C, Laurin F, Grunevald Y (2009) Assessment of cure-residual strains through the thickness of carbon–epoxy laminates using FBGs Part II: technological specimen. Compos Part A Appl Sci Manuf 40(10):1534–1544

    Article  Google Scholar 

  20. Stefaniak D, Kappel E, Spröwitz T, Hühne C (2012) Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts. Compos Part A Appl Sci Manuf 43(7):1081–1091

    Article  CAS  Google Scholar 

  21. AFNOR (1998) NF EN ISO 14125: fibre-reinforced plastic composites—determination of flexural properties

    Google Scholar 

  22. Collombet F, Grunevald Y-H, Crouzeix L, Douchin B, Zitoune R, Davila Y, Cerisier A, Thévenin R (2015) 10—Repairing composites. In: Advances in composites manufacturing and process design, Elsevier, pp 197–227

    Google Scholar 

  23. Crouzeix L, Davila Y, Collombet F, Douchin B, Grunevald Y, Zitoune R (2012) Study of double step lap composite repairs on CFRP evaluators. In: ECCM 15, 2012

    Google Scholar 

  24. Collombet F, Crouzeix L, Grunevald Y, Zeng H, Davila Y, Douchin B, Gillet A (2012) Primary principal composite structure repair with multi-instrumented technological evaluator tool box. In: ECCM 15, 2012

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the National Council of Science and Technology of Mexico (CONACYT) for providing the funding of the Ph.D. investigation of Yves Davila. This work benefits from the project called “Instrumentation with Multi-sensor for Composite Materials and structures (I2MC)” supported by the RTRA-STAE foundation (France). In memory of Prof. Robert Bazer-Bachi, co-leader of I2MC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Davila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davila, Y., Crouzeix, L., Douchin, B., Collombet, F., Grunevald, YH., Rocher, N. (2018). Variability in Monolithic Composite Parts: From Data Collection to FE Analysis. In: Sidhu, S., Bains, P., Zitoune, R., Yazdani, M. (eds) Futuristic Composites . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2417-8_3

Download citation

Publish with us

Policies and ethics