Skip to main content

Practical Distributed Cooperative Control of Multiple Nonholonomic Unicycle Robots

  • Conference paper
  • First Online:
Proceedings of 2018 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 529))

  • 772 Accesses

Abstract

In this work, we study the distributed cooperative control problem of multiple nonholonomic unicycle robots with a time-varying reference trajectory. Under the mild assumptions that the communication topology is bidirectional connected, the reference trajectory is bounded and known for at least one robot and the velocity of the reference trajectory is bounded but unknown for all robots, a novel distributed cooperative control protocol is proposed guaranteeing that all the robots follow the reference trajectory with an arbitrarily small ultimate tracking errors. Simulation examples are given to verify the proposed distributed cooperative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Balch, R.C. Arkin, Behavior-based formation control for multirobot teams. IEEE Trans.Rob. Autom. 14(6), 926–949 (1998)

    Article  Google Scholar 

  2. Z. Lin, B. Francis, M. Maggiore, Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  3. D.V. Dimarogonas, K.J. Kyriakopoulos, On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)

    Article  MathSciNet  Google Scholar 

  4. W. Dong, J.A. Farrell, Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008)

    Article  MathSciNet  Google Scholar 

  5. W. Dong, J.A. Farrell, Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45(3), 706–710 (2009)

    Article  MathSciNet  Google Scholar 

  6. G. Zhai, J. Takeda, J. Imae, T. Kobayashi, Towards consensus in networked non-holonomic systems. IET Control Theory and Appl. 4(10), 2212–2218 (2010)

    Article  MathSciNet  Google Scholar 

  7. J. Yu, S.M. LaValle, D. Liberzon, Rendezvous without coordinates. IEEE Trans. Autom. Control 57(2), 421–434 (2012)

    Article  MathSciNet  Google Scholar 

  8. A. Ajorlou, A.G. Aghdam, Connectivity preservation in nonholonomic multi-agent systems: a bounded distrubuted control strategy. IEEE Trans. Autom. Control 58(9), 2366–2371 (2013)

    Article  Google Scholar 

  9. T. Liu, Z.P. Jiang, Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica 49(2), 592–600 (2013)

    Article  MathSciNet  Google Scholar 

  10. R.H. Zheng, D. Sun, Rendezvous of unicycles: a bearings-only and perimeter shortening approach. Syst. Control Lett. 62(5), 401–407 (2013)

    Article  MathSciNet  Google Scholar 

  11. M.I. El-Hawwary, M. Maggiore, Distributed circular formation stabilization for dynamic unicycles. IEEE Trans. Autom. Control 58(1), 149–162 (2013)

    Article  MathSciNet  Google Scholar 

  12. W. Dong, J.A. Farrell, Formation control of multiple underactuated surface vessels. IET Control Theory Appll. 2(12), 1077–1085 2008

    Article  MathSciNet  Google Scholar 

  13. J. Ghommam, H. Mehrjerdi, F. Mnif, M. Saad, Cascade design for formation control of nonholonomic systems in chained form. J. Franklin Inst. 348(6), 973–998 (2011)

    Article  MathSciNet  Google Scholar 

  14. Y. Jia, Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans. Control Syst. Technol. 8(3), 554–569 (2000)

    Article  Google Scholar 

  15. Y. Jia, Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: a predictive approach. IEEE Trans. Autom. Control 48(8), 1413–1416 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 61573034, No. 61327807), and Fundamental and Frontier Research Project of Chongqing (No. cstc2016jcyjA0404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoli Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, B., Xie, W. (2019). Practical Distributed Cooperative Control of Multiple Nonholonomic Unicycle Robots. In: Jia, Y., Du, J., Zhang, W. (eds) Proceedings of 2018 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 529. Springer, Singapore. https://doi.org/10.1007/978-981-13-2291-4_55

Download citation

Publish with us

Policies and ethics