Skip to main content

Anaerobic Digestion of Microalgae Biomass for Methane Production

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Biomethane is one of the most promising biofuels that is produced from a wide variety of biomass using anaerobic digestion (AD) process. Microalgae, among these biomass sources, have received significant attention since the past years due to their rapid growth rate, capability of accumulating different biomolecules, effective CO2 sequestration, and requirement of relatively small land area. However, despite these advantages of microalgae and potential of AD, conversion of microalgae into methane is bottlenecked by the low biomass loading and recalcitrance of digestible components, low C/N ratio, and interferences of various factors. Eventually, it is necessary to make effective efforts for addressing the shortcomings of the overall process to achieve a state-of-the-art technology for commercial scale methane production. This chapter will discuss the major aspects of biomethane production from microalgae focusing on the potential of these biomass sources for methane production, technical aspects in the conversion of microalgae into methane, and factors affecting methane yield in AD of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adarme OFH, Baêta BEL, Lima DRS, Gurgel LVA, de Aquino SF. Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind Crop Prod. 2017;109:288–99. https://doi.org/10.1016/j.indcrop.2017.08.040.

    Article  CAS  Google Scholar 

  • Alam MA, Vandamme D, Chun W, Zhao X, Foubert I, Wang Z, Muylaert K, Yuan Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15(4):573–83.

    Article  Google Scholar 

  • Angelidaki I, Ahring BK. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol. 2000;41(3):189–94.

    Article  CAS  PubMed  Google Scholar 

  • Annonymous. Stoichiometry of the anaerobic digestion process. 2018. http://www.suscon.org/pdfs/cowpower/biomethaneSourcebook/Appendices_A-F.pdf. Accessed 31 Mar 2018.

  • Babarro J, Reiriz M, Labarta U. Influence of preservation techniques and freezing storage time on biochemical composition and spectrum of fatty acids of Isochrysis galbana clone T-ISO. Aquac Res. 2001;32(7):565–72.

    Article  CAS  Google Scholar 

  • Balat M. Potential alternatives to edible oils for biodiesel production – a review of current work. Energy Convers Manag. 2011;52(2):1479–92. https://doi.org/10.1016/j.enconman.2010.10.011.

    Article  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sustain Energ Rev. 2015;41:1489–500.

    Article  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol. 2003;15(2–3):143–53.

    Article  Google Scholar 

  • Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol. 2012;124:379–86. https://doi.org/10.1016/j.biortech.2012.08.051.

    Article  CAS  PubMed  Google Scholar 

  • Buswell AM, Boruff C. The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sew Work J. 1932;4:454–60.

    CAS  Google Scholar 

  • Cardeña R, Moreno G, Bakonyi P, Buitrón G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem Eng J. 2017;307:948–54. https://doi.org/10.1016/j.cej.2016.09.016.

    Article  CAS  Google Scholar 

  • Chen PH, Oswald WJ. Thermochemical treatment for algal fermentation. Environ Int. 1998;24(8):889–97. https://doi.org/10.1016/S0160-4120(98)00080-4.

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99(10):4044–64.

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702.

    Article  CAS  PubMed  Google Scholar 

  • Collins G, Woods A, McHugh S, Carton MW, O’flaherty V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol Ecol. 2003;46(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  • Cordero Esquivel B, Voltolina Lobina D, Correa Sandoval F. Biochemical composition of two diatoms after different preservation techniques. Comp Biochem Physiol B. 1993;105:369–73.

    Article  Google Scholar 

  • Córdova O, Santis J, Ruiz-Fillipi G, Zuñiga ME, Fermoso FG, Chamy R. Microalgae digestive pretreatment for increasing biogas production. Renew Sustain Energ Rev. 2018;82:2806–13. https://doi.org/10.1016/j.rser.2017.10.005.

    Article  CAS  Google Scholar 

  • Cucchiella F, D’Adamo I. Technical and economic analysis of biomethane: a focus on the role of subsidies. Energy Convers Manag. 2016;119:338–51.

    Article  Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol. 2011;102(4):3883–7.

    Article  CAS  PubMed  Google Scholar 

  • De Bere L. Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol. 2000;41(3):283–90.

    Article  Google Scholar 

  • Deconinck N, Muylaert K, Ivens W, Vandamme D. Innovative harvesting processes for microalgae biomass production: a perspective from patent literature. Algal Res. 2018;31:469–77. https://doi.org/10.1016/j.algal.2018.01.016.

    Article  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19(3):235–40. https://doi.org/10.1016/j.copbio.2008.05.007.

    Article  CAS  PubMed  Google Scholar 

  • Donk EV, Lürling M, Hessen D, Lokhorst G. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr. 1997;42(2):357–64.

    Article  Google Scholar 

  • Ehimen EA, Connaughton S, Sun Z, Carrington GC. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy. 2009;1(6):371–81.

    Article  CAS  Google Scholar 

  • El-Mashad HM, Zeeman G, Van Loon WK, Bot GP, Lettinga G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol. 2004;95(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  • Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018;31:347–62. https://doi.org/10.1016/j.algal.2017.11.038.

    Article  Google Scholar 

  • Fernández J, Pérez M, Romero LI. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour Technol. 2008;99(14):6075–80.

    Article  PubMed  CAS  Google Scholar 

  • Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I. Changes in the microbial communities during co-composting of digestates. Waste Manag. 2014;34(3):632–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigon JC, Guiot SR. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuels Bioprod Biorefin. 2010;4(4):447–58.

    Article  CAS  Google Scholar 

  • Ghosh S, Henry M, Sajjad A, Mensinger M, Arora J. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol. 2000;41(3):101–10.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Romero J, Gonzalez-Garcia A, Chairez I, Torres L, Garcia-Peña EI. Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int J Hydrog Energy. 2014;39(24):12541–50.

    Article  CAS  Google Scholar 

  • González-Fernández C, Molinuevo-Salces B, García-González MC. Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy. 2011;88(10):3448–53. https://doi.org/10.1016/j.apenergy.2010.12.035.

    Article  CAS  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer J. Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenerg. 2012;40:105–11.

    Article  CAS  Google Scholar 

  • Grabner M, Wieser W, Lackner R. The suitability of frozen and freeze-dried zooplankton as food for fish larvae: a biochemical test program. Aquaculture. 1981;26(1–2):85–94.

    Article  Google Scholar 

  • Guendouz J, Buffiere P, Cacho J, Carrere M, Delgenes J-P. High-solids anaerobic digestion: comparison of three pilot scales. Water Sci Technol. 2008;58(9):1757–63.

    Article  CAS  PubMed  Google Scholar 

  • Guiot SR, Frigon J-C. Anaerobic digestion as an effective biofuel production technology. In: Hallenbeck PC, editor. Microbial technologies in advanced biofuels production. Boston: Springer; 2012. p. 143–61. https://doi.org/10.1007/978-1-4614-1208-3_9.

    Chapter  Google Scholar 

  • Harith Z, Yusoff F, Shariff M, Ariff A. Effect of different separation techniques and storage temperatures on the viability of marine microalgae, Chaetoceros calcitrans, during storage. Biotechnology. 2010;9(3):387–91.

    Article  Google Scholar 

  • Hartmann H, Ahring BK. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol. 2006;53(8):7–22.

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energ Rev. 2010;14(3):1037–47.

    Article  CAS  Google Scholar 

  • Hincapié Gómez E, Marchese AJ. An ultrasonically enhanced inclined settler for microalgae harvesting. Biotechnol Prog. 2015;31(2):414–23.

    Article  PubMed  CAS  Google Scholar 

  • Ho S-H, Nagarajan D, N-q R, Chang J-S. Waste biorefineries—integrating anaerobic digestion and microalgae cultivation for bioenergy production. Curr Opin Biotechnol. 2018;50:101–10.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Sahu AK, Oleskowicz-Popiel P. Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energ Rev. 2017;75:692–709.

    Article  CAS  Google Scholar 

  • Kröger M, Müller-Langer F. Review on possible algal-biofuel production processes. Biofuels. 2012;3(3):333–49.

    Article  CAS  Google Scholar 

  • Lakaniemi A-M, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels. 2011;4(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43(17):6475–81.

    Article  CAS  Google Scholar 

  • Lee J-S, Lee J-P. Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng. 2003;8(6):354.

    Article  CAS  Google Scholar 

  • Lee Y-C, Lee K, Oh Y-K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour Technol. 2015;184:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energ Rev. 2011;15(1):821–6. https://doi.org/10.1016/j.rser.2010.07.042.

    Article  CAS  Google Scholar 

  • Lü F, Ji J, Shao L, He P. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels. 2013;6(1):92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malej A, Harris RP. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates? Mar Ecol Prog Ser. 1993:33–42.

    Article  Google Scholar 

  • Martin D, Potts L, Heslop V. Reaction mechanisms in solid-state anaerobic digestion: 1. The reaction front hypothesis. Process Saf Environ Prot. 2003;81(3):171–9.

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev. 2010;14(1):217–32. https://doi.org/10.1016/j.rser.2009.07.020.

    Article  CAS  Google Scholar 

  • Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources. 2011;6(4):5224–59.

    Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol. 2010;150(1):51–6. https://doi.org/10.1016/j.jbiotec.2010.07.030.

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen O, Tähti H, Rintala J. One-stage H2 and CH4 and two-stage H2 + CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenerg. 2009;33(10):1419–27.

    Google Scholar 

  • Pang Y, Liu Y, Li X, Wang K, Yuan H. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuel. 2008;22(4):2761–6.

    Article  CAS  Google Scholar 

  • Park S, Li Y. Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol. 2012;111:42–8.

    Article  CAS  PubMed  Google Scholar 

  • Parkin GF, Owen WF. Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng. 1986;112(5):867–920.

    Article  CAS  Google Scholar 

  • Penaud V, Delgenès JP, Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym Microb Technol. 1999;25(3):258–63. https://doi.org/10.1016/S0141-0229(99)00037-X.

    Article  CAS  Google Scholar 

  • Peng S, Hou C, Wang J, Chen T, Liu X, Yue Z. Performance of anaerobic co-digestion of corn straw and algae biomass from lake Chaohu. Trans Chinese Soc Agric Eng. 2012;28(15):173–8.

    CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  • Polakovičová G, Kušnír P, Nagyová S, Mikulec J. Process integration of algae production and anaerobic digestion. In: 15th international conference on process integration, modelling and, 2012.

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv. 2013;31(8):1408–25.

    Article  CAS  PubMed  Google Scholar 

  • Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Sulochana N. Enhancement of biogas production using algae. Curr Sci. 1989;58(11):646–7.

    Google Scholar 

  • Rapport J, Zhang R, Jenkins BM, Williams RB. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. University of California, Davis, Contractor Report to the California Integrated Waste Management Board 236; 2008.

    Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol. 2011;102(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88(10):3411–24. https://doi.org/10.1016/j.apenergy.2010.11.025.

    Article  CAS  Google Scholar 

  • Richardson B, Orcutt D, Schwertner H, Martinez CL, Wickline HE. Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol. 1969;18(2):245–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond A, Cheng-Wu Z, Zarmi Y. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng. 2003;20(4–6):229–36.

    Article  CAS  PubMed  Google Scholar 

  • Roubaud A, Favrat D. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel. 2005;84(16):2001–7.

    Article  CAS  Google Scholar 

  • Saxena V, Tandon S, Singh K. Anaerobic digestion of green filamentous algae and waterhyacinth for methane production. Natl Acad Sci India, Sci Lett. 1984;7(9):283–4.

    CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1(1):20–43.

    Article  Google Scholar 

  • Shi X-S, Yuan X-Z, Wang Y-P, Zeng S-J, Qiu Y-L, Guo R-B, Wang L-S. Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate. Chem Eng J. 2014;244:258–63.

    Article  CAS  Google Scholar 

  • Shin SG, Lee S, Lee C, Hwang K, Hwang S. Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol. 2010;101(24):9461–70.

    Article  CAS  PubMed  Google Scholar 

  • Shuba ES, Kifle D. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renew Sustain Energ Rev. 2018;81:743–55.

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–16. https://doi.org/10.1016/j.biotechadv.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol. 2016;199:76–82.

    Article  CAS  PubMed  Google Scholar 

  • Sreekrishnan T, Kohli S, Rana V. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresour Technol. 2004;95(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  • Stephens E, Ross IL, Hankamer B. Expanding the microalgal industry–continuing controversy or compelling case? Curr Opin Chem Biol. 2013;17(3):444–52.

    Article  CAS  PubMed  Google Scholar 

  • Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng. 2018;26(1):17–30. https://doi.org/10.1016/j.cjche.2017.08.010.

    Article  CAS  Google Scholar 

  • Tijani H, Abdullah N, Yuzir A. Integration of microalgae biomass in biomethanation systems. Renew Sustain Energ Rev. 2015;52:1610–22. https://doi.org/10.1016/j.rser.2015.07.179.

    Article  CAS  Google Scholar 

  • Tillberg JE, Rowley J. Physiological and structural effects of phosphorus starvation on the unicellular green alga Scenedesmus. Physiol Plant. 1989;75(3):315–24.

    Article  CAS  Google Scholar 

  • Ueno Y, Fukui H, Goto M. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol. 2007;41(4):1413–9.

    Article  CAS  PubMed  Google Scholar 

  • Varel VH, Chen TH, Hashimoto AG. Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycl. 1988;1(1):19–26. https://doi.org/10.1016/0921-3449(88)90004-3.

    Article  CAS  Google Scholar 

  • Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30(6):1447–57.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang H, Qiu Y, Ren L, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production – a review. Bioresour Technol. 2018;248. (Part A):29–36.

    Google Scholar 

  • Ward AJ, Lewis DM, Green FB. Anaerobic digestion of algae biomass: a review. Algal Res. 2014;5:204–14. https://doi.org/10.1016/j.algal.2014.02.001.

    Article  Google Scholar 

  • Williams PJB, Laurens LM. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3(5):554–90.

    Article  CAS  Google Scholar 

  • Xu R, Zhang K, Liu P, Khan A, Xiong J, Tian F, Li X. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour Technol. 2018;247:1119–27. https://doi.org/10.1016/j.biortech.2017.09.095.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Zhang L, Luo X, Zheng Z. Influence of influent methane concentration on biogas upgrading and biogas slurry purification under various LED (light-emitting diode) light wavelengths using Chlorella sp. Energy. 2014;69:419–26.

    Article  CAS  Google Scholar 

  • Yang Y, Gao K. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol. 2003;15(5):379–89.

    Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S. Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrog Energy. 2011;36(5):3465–70.

    Article  CAS  Google Scholar 

  • Yang L, Xu F, Ge X, Li Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energ Rev. 2015;44:824–34. https://doi.org/10.1016/j.rser.2015.01.002.

    Article  CAS  Google Scholar 

  • Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol. 2007;98(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  • Yen H-W, Chiu C-H. The influences of aerobic-dark and anaerobic-light cultivation on CoQ10 production by Rhodobacter sphaeroides in the submerged fermenter. Enzym Microb Technol. 2007;41(5):600–4.

    Article  CAS  Google Scholar 

  • Yu Z, Schanbacher FL. Production of methane biogas as fuel through anaerobic digestion. In: Singh OV, Harvey SP, editors. Sustainable biotechnology. Dordrecht: Springer; 2010. p. 105–27.

    Chapter  Google Scholar 

  • Yuan X, Wang M, Park C, Sahu AK, Ergas SJ. Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environ Res. 2012;84(5):396–404.

    Article  CAS  PubMed  Google Scholar 

  • Zabed H, Boyce A, Faruq G, Sahu J. A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production. Ind Crop Prod. 2016a;94:9–19.

    Article  CAS  Google Scholar 

  • Zabed H, Faruq G, Boyce AN, Sahu JN, Ganesan P. Evaluation of high sugar containing corn genotypes as viable feedstocks for decreasing enzyme consumption during dry-grind ethanol production. J Taiwan Inst Chem Eng. 2016b;58:467–75.

    Article  CAS  Google Scholar 

  • Zabed H, Sahu J, Boyce A, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energ Rev. 2016c;66:751–74.

    Article  CAS  Google Scholar 

  • Zabed H, Boyce AN, Sahu J, Faruq G. Evaluation of the quality of dried distiller’s grains with solubles for normal and high sugary corn genotypes during dry–grind ethanol production. J Clean Prod. 2017a;142:4282–93.

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A. Bioethanol production from lignocellulosic biomass: An overview of pretreatment, hydrolysis, and fermentation. In: Mondal P, Daiai AK, editors. Sustainable utilization of natural resources. Boca Raton: CRC Press; 2017b. p. 145–86. https://doi.org/10.1201/9781315153292-7.

    Chapter  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energ Rev. 2017c;71:475–501. https://doi.org/10.1016/j.rser.2016.12.076.

    Article  CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol. 2011;102(2):1149–58.

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa C, De Vrieze J, Boon N, Verstraete W. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Appl Microbiol Biotechnol. 2012;93(2):859–69.

    Article  CAS  PubMed  Google Scholar 

  • Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol. 2013;97(11):5161–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31571806), China Postdoctoral Science Foundation (Grant No. 2017M621657), National Key R & D Program (Grant No. 2017YFC1600806), and high-level talents project of Six Talent Peaks in Jiangsu Province (Grant No. SWYY-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zabed, H.M., Qi, X., Yun, J., Zhang, H. (2019). Anaerobic Digestion of Microalgae Biomass for Methane Production. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_16

Download citation

Publish with us

Policies and ethics