Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 255))

Included in the following conference series:

Abstract

We propose an alternative, statistical, derivation of the Thermodynamic Bethe Ansatz based on the tree expansion of the Gaudin determinant. We illustrate the method on the simplest example of a theory with diagonal scattering and no bound states. We reproduce the expression for the free energy density and the finite size corrections to the energy of an excited state as well as the LeClair-Mussardo series for the one-point function for local operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There however is a class of two-point functions for which a single insertion is sufficient [9].

  2. 2.

    In the case of the non-local operators the situation is even worse: their diagonal limit diverges as \(L^M\) where M is the number of the particle pairs.

References

  1. M. Luscher, “On a relation between finite size effects and elastic scattering processes,”. Lecture given at Cargese Summer Inst., Cargese, France, Sep 1–15, 1983.

    Google Scholar 

  2. A. B. Zamolodchikov, “Thermodynamic Bethe Ansatz in relativistic models. Scaling three state Potts and Lee-Yang models,” Nucl. Phys. B342 (1990) 695–720.

    Google Scholar 

  3. C. Yang and C. Yang, “Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction,” Journ. Math. Phys. 10 (1969) 1115.

    Google Scholar 

  4. P. Dorey and R. Tateo, “Excited states by analytic continuation of TBA equations,” Nucl. Phys. B482 (1996) 639–659, arXiv:hep-th/9607167.

    Article  MathSciNet  Google Scholar 

  5. B. Basso, S. Komatsu, and P. Vieira, “Structure Constants and Integrable Bootstrap in Planar N\(=\)4 SYM Theory,” arXiv:1505.06745.

  6. J. Balog, “Field theoretical derivation of the TBA integral equation,” Nucl. Phys. B419 (5, 1994) 480–506.

    Article  MathSciNet  Google Scholar 

  7. P. Dorey, D. Fioravanti, C. Rim, and R. Tateo, “Integrable quantum field theory with boundaries: the exact g-function,” Nucl.Phys. B696 (2004) 445–467, arXiv:hep-th/0404014.

    Article  MathSciNet  Google Scholar 

  8. F. Woynarovich, “On the normalization of the partition function of Bethe Ansatz systems,” Nucl. Phys. B852 (2011) 269–286, arXiv:1007.1148.

    Article  MathSciNet  Google Scholar 

  9. B. Pozsgay and I. M. Szécsényi, “LeClair-Mussardo series for two-point functions in Integrable QFT,” arXiv:1802.05890.

  10. F. Woynarovich, “O(1) contribution of saddle point fluctuations to the free energy of Bethe Ansatz systems,” Nucl. Phys. B700 (2004) 331–360, arXiv:cond-mat/0402129.

    Article  MathSciNet  Google Scholar 

  11. B. Pozsgay, “On O(1) contributions to the free energy in Bethe Ansatz systems: The Exact g-function,” JHEP 08 (2010) 090, arXiv:1003.5542.

  12. S. Chaiken and D. Kleitman, “Matrix Tree Theorems,” Journal of Combinatorial Theory, Series A, Vol. 24, Issue 3 (May 1978) 377–381.

    Article  MathSciNet  Google Scholar 

  13. A. Abdesselam, “The Grassmann–Berezin calculus and theorems of the matrix-tree type,” Advances in Applied Mathematics 33 (2004), no. 1, 51 – 70.

    Article  MathSciNet  Google Scholar 

  14. A. Leclair and G. Mussardo, “Finite temperature correlation functions in integrable QFT,” Nucl. Phys. B552 (1999) 624–642, arXiv:hep-th/9902075.

    Article  MathSciNet  Google Scholar 

  15. H. Saleur, “A comment on finite temperature correlations in integrable QFT,” Nucl. Phys. B567 (2000) 602–610, arXiv:hep-th/9909019.

    Article  MathSciNet  Google Scholar 

  16. Z. Bajnok and C. Wu, “Diagonal form factors from non-diagonal ones,” arXiv:1707.08027.

  17. B. Pozsgay and G. Takacs, “Form factors in finite volume. II. Disconnected terms and finite temperature correlators,” Nucl.Phys. B788 (2008) 209–251, arXiv:0706.3605.

    Article  MathSciNet  Google Scholar 

  18. B. Pozsgay, “Mean values of local operators in highly excited Bethe states,” J. Stat. Mech. 1101 (2011) P01011, arXiv:1009.4662.

  19. Z. Bajnok and R. A. Janik, “From the octagon to the SFT vertex - gluing and multiple wrapping,” arXiv:1704.03633.

  20. A. LeClair, G. Mussardo, H. Saleur, and S. Skorik, “Boundary energy and boundary states in integrable quantum field theories,” Nucl. Phys. B453 (1995) 581–618, arXiv:hep-th/9503227.

    Article  MathSciNet  Google Scholar 

  21. M. de Leeuw, C. Kristjansen, and K. Zarembo, “One-point functions in defect CFT and integrability,” Journal of High Energy Physics 8 (Aug., 2015) 98, arXiv:1506.06958.

  22. M. de Leeuw, A. C. Ipsen, C. Kristjansen, and M. Wilhelm, “Introduction to Integrability and One-point Functions in \(\cal N\it =4\) SYM and its Defect Cousin,” in Les Houches Summer School: Integrability: From Statistical Systems to Gauge Theory Les Houches, France, June 6-July 1, 2016. 2017. arXiv:1708.02525.

  23. G. Kato and M. Wadati, "Graphical representation of the partition function of a one-dimensional \(\delta \)-function Bose gas", J. Math. Phys. 42 (2001) 4883-4893; "Partition Function for a one-dimensional delta-function Bose Gas", Phys. Rev. E63 (2001) 036106; "Direct Calculation of Thermodynamic Quantities for Heisenberg Model", J. Math. Phys. 43 (2002) 5060-5078; "Bethe Ansatz Cluster Expansion Method for Quantum Integrable Particle Systems", J. Phys. Soc. Japan, 73 (2004) 1171–1179.

    Google Scholar 

  24. M. Luscher, “Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States,” Commun. Math. Phys. 104 (1986) 177.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Benjamin Basso for enlightening discussions, to Zoltan Bajnok for bringing to our attention ref. Reference [8]. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kostov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostov, I., Serban, D., Vu, DL. (2018). TBA and Tree Expansion. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-13-2179-5_6

Download citation

Publish with us

Policies and ethics