Skip to main content

Geospatial Data for the Himalayan Region: Requirements, Availability, and Challenges

  • Chapter
  • First Online:
Remote Sensing of Northwest Himalayan Ecosystems

Abstract

Availability of appropriate geospatial data over the Himalayan and adjacent Tibetan Plateau region has emerged as one of the key data requirements to understand the fragile landscape dynamics, changing climate and its implications, and assessment of natural resources of the region. In the Himalayas, there are three principal agents of change: plate tectonics, climate change, and human interaction; all three work in a very intricate manner to modulate all natural processes and features. Data requirements can be as diverse as the processes and features of the Himalayas. Spatial resolution requirements of RS data vary from tens of centimeters to tens of meters and a few minutes to years in terms of temporal resolution. Availability of data was limited to systematic aerial photography by the mapping agencies carried out in the second half of the last century and resultant topographical maps on 1:50,000 scale earlier. Satellite coverages are available from the early 1970s. In spite of enormous progress in satellite imaging, large tracts of Himalaya remain unexplored in terms of data availability at a high spatial resolution. Therefore, in spite of wide spread concern, development needs, and environment and security issues, the Himalayas have emerged as “data-scarce” region of world. In this context, it is very pertinent to evaluate existing datasets, and then a systematic attempt can be made on data acquisition strategy involving near-ground (UAVs (unmanned aerial vehicles)) platforms to aerial and spacecraft platforms. The spatial data acquisition strategy should be driven by the most immediate concerns of the region, i.e., disaster monitoring and mitigation, natural resource management including cryosphere status vis-à-vis climate change impact assessment, infrastructure development, and crustal deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, N., Kumar, S. and Tolpekin, V. (2016) ‘Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval’, Proc. SPIE, pp. 987708–987710.

    Google Scholar 

  • Awasthi, S. et al. (2017) ‘Pol-InSAR based snow depth retrieval using spaceborne TerraSAR-X data’, in 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). New Delhi: IEEE, pp. 1–7.

    Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V, & Nayak, S. (2004). Technical Note: DEM from IRS-1C PAN stereo coverages over Himalayan glaciated region—accuracy and its utility. International Journal of Remote Sensing, 25(19), 4029–4041.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V, Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28(2), 437–442.

    Article  Google Scholar 

  • Bartelt, P., Bieler, C., Bﺲhler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B.W., Salz, M., Schneider, M., 2013. RAMMS - rapid mass movements simulation, A numerical model for debris flows in research and practice, User Manual v1.7.0, Debris Flow, Manuscript update November 2017. WSL Institute for Snow and Avalanche Research SLF 1–116.

    Google Scholar 

  • Bayanudin, A. A., & Jatmiko, R. H. (2016). Orthorectification of Sentinel-1 SAR (Synthetic Aperture Radar) Data in Some Parts of South-eastern Sulawesi Using Sentinel-1 Toolbox. IOP Conference Series: Earth and Environmental Science, 47(1), 12007.

    Article  Google Scholar 

  • Berthier E., Vincent C., Magnússon E., Gunnlaugsson Á. Þ., Pitte P., Le Meur E., Masiokas M., Ruiz L., Pálsson F., Belart J. M. C., and Wagnon, P. 2014 Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. The Cryosphere, 8, 2275–2291, 2014.

    Article  Google Scholar 

  • Bhattacharya, A., & Mukherjee, K. (2017). Review on InSAR based displacement monitoring of Indian Himalayas: issues, challenges and possible advanced alternatives. Geocarto International, 32(3), 298–321.

    Article  Google Scholar 

  • Chavez, P.S., Jr., and D.J. MacKinnon. 1994. Automatic detection of vegetation changes in the Southwestern United States using remotely sensed images. Journal of Photogrammetric Engineering and Remote Sensing 60(5):571–583.

    Google Scholar 

  • Civco, D. L. 1989. Topographic normalization of Landsat Thematic Mapper digital imagery”, Photogramm. Eng. Remote Sens., vol. 55, pp. 1303–1309.

    Google Scholar 

  • Colby, J.D., 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing 57, 531–537.

    Google Scholar 

  • Dozier, J.and D. Marks, 1987. Snow mapping and classification from Landsat Thematic Mapper data, Ann. Glaciol., 9, 97–103.

    Article  Google Scholar 

  • Dubayah, R., Blair, J., 2000. LiDAR Remote Sensing for Forestry Applications, Journal of Forestry 98 (6), pp. 44–46.

    Google Scholar 

  • El-Darymli, K. et al. (2014) ‘Understanding the significance of radiometric calibration for synthetic aperture radar imagery’, in 2014 I.E. 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6.

    Google Scholar 

  • Fraser, C., and H. B. Hanley (2005). Bias compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogrammetric Engineering and Remote sensing, 71(8): 909–915

    Article  Google Scholar 

  • Gao, B.C. & Davis, C. O., 1997. Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers, in Imaging Spectrometry III, Eds. Michael R. Descour, Sylvia S. Shen, Proceedings of SPIE Vol. 3118, 132–141.

    Article  Google Scholar 

  • Gao, B.C., Montes, M. J., Ahmad, Z. and Davis, C. O., 2000. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space, Applied Optics, 39(6): 887–896.

    Article  Google Scholar 

  • Garg, R.D, Agrawal Shefali, Dadhwal, V.K., 2008. Evaluation of approaches for AWiFS multi-date registration. International Journal of Applied Earth Observation and Geoinformation 10 (2008) 175–180

    Article  Google Scholar 

  • Giribabu, D., Kumar, P., Mathew, J., Sharma, K.P., Murthy, Y.V.N.K. (2013b). DEM generation using Cartosat-1 stereo data: issues and complexities in Himalayan terrain, European Journal of Remote Sensing 46, 431–443.

    Article  Google Scholar 

  • Giribabu, D., Srinivasa Rao, S., & Krishna Murthy, Y. V. N. (2013a). Improving Cartosat-1 DEM accuracy using synthetic stereo pair and triplet. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 31–43.

    Article  Google Scholar 

  • Gonnuru, P. and Kumar, S. (2018) ‘PsInSAR based land subsidence estimation of Burgan oil field using TerraSAR-X data’, Remote Sensing Applications: Society and Environment, 9(January 2018), pp. 17–25.

    Article  Google Scholar 

  • Grandin, R., Doin, M.-P., Bollinger, L., Pinel-Puysségur, B., Ducret, G., Jolivet, R., & Sapkota, S. N. (2012). Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology.

    Google Scholar 

  • Grodecki, J. and Dial, G. 2003. Block adjustment of high-resolution satellite images described by rational polynomials, Photogramm. Eng. Remote Sens., vol. 69, pp. 59–68.

    Article  Google Scholar 

  • Grodecki, J., 2001. IKONOS stereo feature extraction-RPC approach. Proceedings of 2001 ASPRS Annual Convention (CD ROM), 23-27 April.

    Google Scholar 

  • Gu, D.; Gillespie, A. 1998. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ. 64, 166–175.

    Article  Google Scholar 

  • Guertin, F., and Shaw, E., 1981, Definition and potential of geocoded satellite imagery products, Proceedings of the 7th Canadian Symposium on Remote Sensing, Winnipeg, Canada, September 8–11, (Winnipeg, Canada: Manitoba Remote Sensing Centre), pp. 384–394.

    Google Scholar 

  • Gupta R.D., Mritunjay Kumar Singh, Snehmani , A. Ganju, 2014. Validation of SRTM X Band DEM over Himalayan Mountain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4, 2014 ISPRS Technical Commission IV Symposium, 14–16 May 2014, Suzhou, China

    Article  Google Scholar 

  • Negi, H. S., Kulkarni, A. V., and Semwal, B. S. (2009). Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements. Journal of Earth System Science, 118(5), 525.

    Article  Google Scholar 

  • Hahn M, Baral TN and Sharma RK (2003) A study on digital orthophoto generation of Mount Everest region. Nepal. J. Geo-inf. 2, 35–43

    Google Scholar 

  • Hilal M., Tiwari, P. S., Raghavendra, S., Pande, H., Reddy, K.S., Agarwal, S., Raju, P.L.N. (2015). Building damage assessment by integrating Terrestrial Laser scanning and Open Source Close Range Photogrammetry application National conference on open source geospatial tools in climate change research and natural resources management, 8-10th June 2015.

    Google Scholar 

  • Jacobsen, K., 2004. DEM generation from satellite data. In:Goossens, R. (Ed.): Remote Sensing in Transition, Proc. of the 23rd EARSeL Symposium 2003, Ghent, Belgium, pp. 513–525

    Google Scholar 

  • Jensen, J.R. (2006). Remote sensing of the environment an earth resource perspective: low price edition Pearson Education, New Delhi, India

    Google Scholar 

  • Joshi, S. K. and Kumar, S. (2017) ‘Performance of PolSAR backscatter and PolInSAR coherence for scattering characterization of forest vegetation using single pass X-band spaceborne synthetic aperture radar data’, Journal of Applied Remote Sensing, 11(2), p. 26022. Joshi, S. K. and Kumar, S. (2017) ‘Spaceborne PolInSAR tomography for vertical profile retrieval of forest vegetation’, Journal of Applied Remote Sensing, 11(1).

    Article  Google Scholar 

  • Keith, R. and Wang M. (2005), “Enhancement of Image-to-Image Co-registration Accuracy Using Spectral Matching Methods”, 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences.

    Google Scholar 

  • Kumar, S. (2009) Retrieval of forest parameters from Envisat ASAR data for biomass inventory in dudhwa national park, U.P.,India. ITC,International Institute for geo-information science and earth observation.

    Google Scholar 

  • Kumar, S., Garg, R. D., Kushwaha, S. P. S., and Pandey, U. (2017b). Spaceborne SAR Tomography for Vertical Profile Retrieval of Forest Vegetation. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 807–816.

    Article  Google Scholar 

  • Kumar, S., Garg, R. D., Kushwaha, S. P. S., Jayawardhana, W. G. N. N., and Agarwal, S. (2017a). Bistatic PolInSAR Inversion Modelling for Plant Height Retrieval in a Tropical Forest. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 817–826.

    Article  Google Scholar 

  • Kumar, S., Gupta, V., Gonnuru, P., and Joshi, S. K. (2016b). PolSAR calibration and reconstruction of hybrid polarimetric RISAT-1 data for pseudo quad-pol decomposition: a comparison with quad-pol. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV (Vol. 9881, p. 98812C). International Society for Optics and Photonics.

    Google Scholar 

  • Kumar, S., Joshi, S. K. and Govil, H. (2017c) ‘Spaceborne PolSAR Tomography for Forest Height Retrieval’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), pp. 5175–5185.

    Article  Google Scholar 

  • Kumar, S., Kattamuri, H. P. and Agarwal, S. (2016a) ‘Dark spot detection for characterization of marine surface slicks using PolSAR remote sensing’, Proc. SPIE, p. 98780K–98780K–17.

    Google Scholar 

  • Kumar, S., Khati, U. G., Chandola, S., et al. (2017d) ‘Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest’, Advances in Space Research, 60(3), pp. 571–586.

    Article  Google Scholar 

  • Kumar, S., Pandey, U., Kushwaha, S. P., Chatterjee, R. S., and Bijker, W. (2012). Aboveground biomass estimation of tropical forest from Envisat advanced synthetic aperture radar data using modeling approach. Journal of applied remote sensing, 6(1), 063588.

    Article  Google Scholar 

  • Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G.G., Spies, T.A. and Harding, D., 1999. LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 70(3): pp. 339–361

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation. John Wiley and Sons.

    Google Scholar 

  • Luckman, A. J. (1998). Correction of SAR imagery for variation in pixel scattering area caused by topography. IEEE Transactions on Geoscience and Remote Sensing.

    Google Scholar 

  • M. N. S., R. and Kumar, S. (2016) ‘Feature extraction using multi-temporal fully polarimetric SAR data’, Proc. SPIE, pp. 987711–987718.

    Google Scholar 

  • Mangla, R., & Kumar, S. (2014). DEM Construction using DInSAR. In ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XL-8, pp. 817–820).

    Article  Google Scholar 

  • Mangla, R., Kumar, S. and Nandy, S. (2016) ‘Random forest regression modelling for forest aboveground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data’, Proc. SPIE, p. 98790Q–98790Q–11.

    Google Scholar 

  • Martha, T. R., Kerle, N., van Westen, C. J., Jetten, V., &Vinod Kumar, K. (2010). Effect of sun elevation angle on DSMs derived from Cartosat-1 data. Photogrammetric Engineering and Remote Sensing, 76(4), 429–438.

    Article  Google Scholar 

  • Mather P. M and Magaly Koch (2010), Computer Processing of Remotely-Sensed Images: an Introduction, 4th edition John Wiley & Sons.

    Google Scholar 

  • Prajapati, R., Kumar, S. and Agrawal, S. (2016) ‘Simulation of SAR backscatter for forest vegetation’, Proc. SPIE, p. 98811T–98811T–12.

    Google Scholar 

  • Qu, Z., Goetz, A.F.H, Heidebrecht, K.B., 2000. High-Accuracy Atmosphere Correction for Hyperspectral Data (HATCH). JPL AVIRIS Proceedings.

    Google Scholar 

  • Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. Journal of Photogrammetry and Remote Sensing, 57, 241–262

    Article  Google Scholar 

  • Raghavendra, S., Reddy, K.S., Tiwari, P. S., Pande, H, Sharma, M., Agarwal, S Raju, P.L.N., Murthy, Y.V.N.K. (2015). An open source approach for 3D street view generation. National conference on open source geospatial tools in climate change research and natural resources management, 8-10th June 2015.

    Google Scholar 

  • Richter, R. and Schläpfer, D., 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction, Int. J. Remote Sensing, 23: 2631–2649.

    Article  Google Scholar 

  • Richter, R., 1996. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sensing, 17: 1201–1214.

    Article  Google Scholar 

  • RIEGL, 2015. RIEGL Laser Measurement Systems. , http://www.riegl.com [Accessed on 14–05-2015]

  • Satyabala, S. P., & Bilham, R. (2006). Surface deformation and subsurface slip of the 28 March 1999 Mw = 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Geophysical Research Letters, 33(23).

    Google Scholar 

  • Schott, J. R., Salvaggio, C. and Volchok, W. J. 1988. Radiometric scene normalization using pseudoinvariant features,” Remote Sens. Environ. 26(1), 1–16.

    Article  Google Scholar 

  • Shimada, M. (2010). Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2010.2072984

    Article  Google Scholar 

  • Slater, J.A., Heady, B., Kroenung, G., Curtis, W., Haase, J., Hoegemann, D., Shockley, C., and Tracy, K., 2011. Global assessment of the new ASTER global digital elevation model. Photogrammetric Engineering and Remote Sensing, 77(4), pp. 335–349

    Article  Google Scholar 

  • Smith, J.A.; Lin, T.L.; Ranson, K.J. (1980). The Lambertian assumption and Landsat data. Photogramm. Eng. Remote Sens, 46, 1183–1189

    Google Scholar 

  • Soenen, S. A.; Peddle D. R.; Coburn, C. A. 2005.SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain, in IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 9, pp. 2148–2159

    Article  Google Scholar 

  • Sullivan, R.J. (2004). Radar foundations for imaging and advanced concepts: Scitech Publishing, INC

    Google Scholar 

  • Tao, C.V., and Y. Hu, 2001. A comprehensive study of the rational function model for photogrammetric processing, Photogrammetric Engineering & Remote Sensing, 67(1):1347–1357.

    Google Scholar 

  • Teillet, P.M.; Guindon B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote. Sens.1982, 8, 84–106.

    Article  Google Scholar 

  • Tomar, K. S. et al. (2016) ‘Semi-empirical modelling for forest above ground biomass estimation using hybrid and fully PolSAR data’, Proc. SPIE, pp. 987711–987729.

    Google Scholar 

  • Toutin, T., 2004. Geometric processing of remote sensing images: Models algorithms and methods, International Journal of Remote Sensing, 25(10):1893–1924.

    Article  Google Scholar 

  • van der Sanden, J.J. (1997). Radar remote sensing to support tropical forest management: TropenbosGuyana Series 5, Guyana.

    Google Scholar 

  • Vermote, E.F., Tanre, D., Deuzé, J.L., Herman, M., and Morcrette, J.J., 1997. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosc. Remote Sens. 35(3): 675–686.

    Article  Google Scholar 

  • Vries, C. D., Danaher, T. and Scarth, P. 2004. Calibration of multiple Landsat sensors based on pseudo-invariant target sites in Western Queensland, Australia, in Proc. of Geoscience and Remote Sensing Symp., Alaska, pp. 3729–3732.

    Google Scholar 

  • Xie, H., Hicks, N., Keller, G. R., Huang, H. and Kreinovich, V. (2003), “An IDL/ENVI Implementation of the FFT-based Algorithm for Automatic Image Registration, Computers & Geosciences, 29(8), 1045–1055.

    Article  Google Scholar 

  • Yamane N., Fujita, K., Nonaka, T., Shibayama, T., and Takagishi, S. 2008 Accuracy Evaluation of DEM derived by Terrasar-X Data in the Himalayan Region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

    Google Scholar 

  • Yuan, D. and C.D. Elvidge, 1996. Comparison of relative radiometric normalization techniques. ISPRS J. Photogramm. Remote Sens., 51: 117–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, S., Raghavendra, S., Kumar, S., Pande, H. (2019). Geospatial Data for the Himalayan Region: Requirements, Availability, and Challenges. In: Navalgund, R., Kumar, A., Nandy, S. (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2128-3_22

Download citation

Publish with us

Policies and ethics