Skip to main content

Comparison of Saturated Hydraulic Conductivity Methods for Sandy Loam Soil with Different Land Uses

  • Conference paper
  • First Online:
Water Resources and Environmental Engineering I

Abstract

Saturated hydraulic conductivity (Ks) is a quantitative measure of saturated soil properties and it is essential for designing irrigation, drainage and waste water systems, modelling studies for understanding and prediting rates of infiltration, runoff, erosion, seepage, upflux, solute transport and migration of pollutant to groundwater. However, the accuracy of Ks is highly dependent on the method used, soil and surface characteristics. The objective of the study was to compare Ks methods such as two in situ [Double ring infiltrometer (DRI), air entry permeameter (AEP)] and one pedotransfer function (PTF) based methods for four different land uses such as paddy field (PADF), mango field (MANF), cashew field (CASF) and playground (PLAG). The Ks obtained from the DRI, AEP and PTF methods were used to study the effect of the method and land use on Ks and suitability of a method for a land use. It was observed that the measured Ks data using AEP and DRI of different land uses follow a log-normal distribution. The mean Ks were significantly different for both measuring technique and the land use. The AEP resulted highest (2.64 mm/h) and PTF lowest (1.59 mm/h) values of Ks, respectively for all land uses, whereas the Ks was highest (2.47 mm/h) and lowest (1.75 mm/h) for the land uses CASF and PLAG, respectively. For all land uses, the mean Ks were highest for AEP followed by DRI, and PTF methods. The order of Ks obtained for the land uses were CASF (2.51 mm/h), MANF (1.87 mm/h), PADF (1.82 mm/h) and PLAG (1.71 mm/h). Spatial variability of Ks was observed for DRI method and the land use PLAG. The selection of best suitable method for a particular situation can be obtained by optimizing the interdependent parameters, including method to be used, accuracy in instrument and measurement methods, soil condition and the numbers of practical constraints of the investigation (e.g., cost, availability of manpower, time requirement, portability of estimate, simplicity in measuring technique, operating condition).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds, W.D.: Saturated hydraulic conductivity: Laboratory measurement. In: Carter, M.R. (ed.) Soil Sampling and Methods of Analysis, pp. 589–598 (1993)

    Google Scholar 

  2. Shukla, M., Lal, R.: Transport of dissolve organic carbon through soil columns. Annual Meeting of ASA/SSSA Seattle, WA, p. 31 (2004)

    Google Scholar 

  3. Prieksat, M.A., Kaspar, T.C., Ankeny, M.D.: Positional and temporal changes in pounded infiltration in corn field. Soil Sci. Soc. Am. J. 58, 181–184 (1994)

    Article  Google Scholar 

  4. Lekamalage, W.B.: Characterization of surface soil hydraulic conductivity in sloping landscapes. Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Soil Science University of Saskatchewan Saskatoon, pp. 1–4 (2003)

    Google Scholar 

  5. Lee, H.J.: Comparing the inverse parameter estimation approach with pedo-transfer function method for estimating soil hydraulic conductivity. Geosci. J. 9(3), 269–276 (2005)

    Article  Google Scholar 

  6. Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B.: Physical properties of low-lying agricultural peat soils in England. Geoderma 154, 196–202 (2010)

    Article  Google Scholar 

  7. Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A.: influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17, 5185–5195 (2013)

    Article  Google Scholar 

  8. Holden, J., Burt, T.P.: Hydraulic conductivity in upland blanket peat. Measur. Var. Hydrological Process. 17, 1227–1237 (2003)

    Article  Google Scholar 

  9. Rossiter, G.D., Jatten, G.V.: Effects of soil depth and saturated hydraulic conductivity spatial variation on runoff simulation by Limburg soil erosion model (LISEM). A Case Study in Faucon Catchment, France. Enschede, the Nederland’s (2011)

    Google Scholar 

  10. Nielsen, D.R., Biggar, J.W., Erh, K.T.: Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–259 (1973)

    Article  Google Scholar 

  11. Darzi, A., Yari, A., Bagheri, H., Sabe, G., Yari, R.: Study of variation of saturated hydraulic conductivity with time. J. Irrig. Drain. Eng. 134, 479–484 (2008)

    Article  Google Scholar 

  12. Bagarello, V., Provenzano, G., Sgroi, A.: Fitting particle size distribution models to data from burundian soils for the best procedure and other purposes. Biosys. Eng. 4, 435–441 (2009)

    Article  Google Scholar 

  13. Dev, K.S., Shukla, K.M.: Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 8(5), 489–502 (2012)

    Article  Google Scholar 

  14. Reynolds, D.W., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S.: Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478–484 (2000)

    Article  Google Scholar 

  15. Bagarello, B., Castellini, M., Di Prima, S., Giordano, G., Iovino, M.: Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environ. Sci. 19, 599–608 (2013)

    Article  Google Scholar 

  16. Klute, A.: Laboratory measurement of hydraulic conductivity of saturated soil. In: Black, C.A. (ed.). Methods of Soil Analysis, Part 1, pp. 210–221 (1965)

    Google Scholar 

  17. Lee, M.D., Reynolds, D.W., Elrick, E.D., Clotheier, E.B.: A comparison of three field method for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 65, 563–573 (1985)

    Article  Google Scholar 

  18. Klute, A., Dirksen, C.: Hydraulic conductivity and diffusivity: laboratory methods. In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, pp. 687–734 (1986)

    Google Scholar 

  19. Grant, C.D., Groenevelt, P.H.: Weighting the differential water capacity to account for declining hydraulic conductivity in a drying coarse-textured soil. Soil Res. 53(4), 386–391 (2015)

    Article  Google Scholar 

  20. Jačka, L., Pavlásek, J., Kuráž, V., Pech, P.: A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219, 82–88 (2014)

    Article  Google Scholar 

  21. Burgy, R.H., Luthin, J.N.: A test of the single and double ring type infiltrometers. Trans. Am. Geophys. Union 37, 189–191 (1956)

    Article  Google Scholar 

  22. Bagarello, V., Iovino, M., Lai, J.B.: Field and numerical tests of the two-ponding depth procedure for analysis of single-ring pressure infiltrometer data. Pedosphere 23(6), 779–789 (2013)

    Article  Google Scholar 

  23. Elrick, D.E., Reynolds, W.D., Tan, K.A.: Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Groundw. Monit. Remediat. 9(3), 184–193 (1989)

    Article  Google Scholar 

  24. Bouwer, H.: A double tube method for measuring hydraulic conductivity of soil in situ above a water table. In: Soil Science Society of America Proceedings, vol. 25, pp. 334–342 (1961)

    Google Scholar 

  25. Perroux, K.M., White, I.: Designs for disc permeameters. Soil Sci. Soc. Am. J. 52, 1205–1215 (1988)

    Article  Google Scholar 

  26. Bouwer, H.: Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2, 729–738 (1966)

    Article  Google Scholar 

  27. Bagarello, V., Iovino, M., Elrick, D.: A simplified falling-head technique for rapid determination of field saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68, 66–73 (2004)

    Article  Google Scholar 

  28. Topp, G.C., Binns, M.N.: Field measurement of hydraulic conductivity with a modified air entry permeameter. Can. J. Soil Sci. 56, 139–147 (1976)

    Article  Google Scholar 

  29. Mohanty, B.P., Kanwar, S.R., Everts, J.C.: Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. soil Sci. Soc. Am. J. 58(3), 672–677 (1994)

    Article  Google Scholar 

  30. Bodhinayake, W., Si, C.B.: Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrol. Process. 18, 2835–2850 (2004)

    Article  Google Scholar 

  31. Fallico, C., Migliari, E., Troisi, S.: Comparison of three measurement methods of saturated hydraulic conductivity. Hydrol. Earth Syst. Sci. Discuss. 3, 987–1019 (2006)

    Article  Google Scholar 

  32. Bagarello, V., Sgroi, A.: Using the single-ring infiltrometer method to detect temporal changes in surface soil field saturated hydraulic conductivity. Soil Tillage Res. 76(1), 13–24 (2004)

    Article  Google Scholar 

  33. Fodor, N., Sandor, R., Orfanus, T., Lichne, L., Rajkai, K.: Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165, 60–68 (2011)

    Article  Google Scholar 

  34. Ronayne, M.J., Houghton, T.B., Stednick, J.D.: Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J. Hydrol. Eng. 458(459), 103–109 (2012)

    Article  Google Scholar 

  35. Runbin, D.R., Fedler, B.C., Borrelli, J.: Comparison of methods to estimate saturated hydraulic conductivity in texas soils with grass. J. Irrig. Drain. Eng. 138(4), 322–327 (2012)

    Article  Google Scholar 

  36. Bagarello, V., Baiamonte, G., Castellini, M., Di Prima, D., Iovino, M.: A comparison between the single ring pressure infiltrometer and simplified falling head techniques. Hydrol. Process. 28, 4843–4853 (2014)

    Article  Google Scholar 

  37. Hall, D.G., Reeve, M.J., Thomasson, A.J., Wright, A.F.: Water Retention, Porosity and Density of Field Soils. Soil Survey of England and Wales. Rothamsted Experimental Station, Harpenden, UK (1977)

    Google Scholar 

  38. Campbell, G.S.: Soil Physics with Basic: Transport Models for Soil Plant Systems. Elsevier Science, New York (1985)

    Google Scholar 

  39. Rawls, W.J., Gimenez, D., Grossman, R.: Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Am. Soc. Agric. Biol. Eng. 41(4), 983–988 (1998)

    Article  Google Scholar 

  40. Smettem, K.R.J., Bristow, K.L.: Obtaining soil hydraulic properties for water balance and leaching models from survey data. 2. Hydraulic conductivity. Aust. J. Agric. Res. 50(7), 1259–1262 (1999)

    Article  Google Scholar 

  41. Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251, 123–150 (2001)

    Google Scholar 

  42. Wosten, J.H.M., Lilly, A., Nemes, A., Le Bas, C.: Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169–185 (1999)

    Article  Google Scholar 

  43. Schaap, M.G., Leij, F.J., Van Genuchten, M.T.: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)

    Article  Google Scholar 

  44. Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., Plagge, R.: Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102, 275–297 (2001)

    Article  Google Scholar 

  45. Bouma, J.: Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Sci. Soc. Am. J. 46, 438–441 (1983)

    Article  Google Scholar 

  46. Nielsen, D.R., Wendroth, O.: Spatial and Temporal Statistics—Sampling Field Soils and Their Vegetation. Catena, Reiskirchen, Germany, p. 416 (2003)

    Google Scholar 

  47. Bormann, H., Klaassen, K.: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two northern german soils. Geoderma 145, 295–302 (2008)

    Article  Google Scholar 

  48. Hu, W., Shao, M., Wang, Q., She, D.: Effects of measurement method, scale, and landscape features on variability of saturated hydraulic conductivity. J. Hydrol. Eng. 18, 378–386 (2013)

    Article  Google Scholar 

  49. Reynolds, W.D., Elrick, D.E., Young, E.G.: Ring or cylinder infiltrometers (vadose zone). In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4: Physical Methods. Soil Science Society of America Journal Madison, pp. 818–843 (2002)

    Google Scholar 

  50. Hu, W., Shao, M., Wang, Q., Fan, J., Horton, R.: Temporal changes of soil hydraulic properties under different land uses. Geoderma 149(3–4), 355–366 (2009)

    Article  Google Scholar 

  51. Carter, M.R., Gregorich, E.G.: Soil Sampling and Methods of analysis. Canadian Society of Soil Science, Pinawa, Manitoba (2008)

    Google Scholar 

  52. Rao, M.D., Raghuwanshi, N.S., Singh, R.: Development of a physically based 1d-infiltration model for irrigated soils. Agric. Water Manag. 85(1), 165–174 (2006)

    Google Scholar 

  53. Nimmo, J.R., Schmidt, K.M., Perkins, K.S., Stock, J.D.: Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J. 8(1), 142–149 (2009)

    Article  Google Scholar 

  54. Schaap, M.G.: Rosetta Version 1.0. U.S. Salinity Laboratory, ARS, U.S. Department of Agriculture, Riverside, CA. (1999)

    Google Scholar 

  55. Alvarez-Acosta, C., Lascano, R.J., Stroosnijder, L.: Test of the Rosetta pedotransfer function for saturated hydraulic conductivity. Open J. Soil Sci. 2(3), 203–212 (2012)

    Article  Google Scholar 

  56. Schaap, M.G., Van Genuchten, M.T.: A modified Mualem-Van Genuchten formulation. Vadose Zone J. 5, 27–34 (2006)

    Article  Google Scholar 

  57. Aldabagh, A.S.Y., Beer, C.E.: Field measurement of hydraulic conductivity above a water table with air-entry permeameter. Am. Soc. Agric. Biol. Eng. 14(1), 29–31 (1971)

    Google Scholar 

  58. Nemati, M.R., Caron, J., Banton, O., Tardif, P.: Determining air entry value in peat substrates. Soil Sci. Soc. Am. J. 66(2), 367–373 (2002)

    Article  Google Scholar 

  59. Van Den Berg, J.A., Louters, T.: The variability of soil moisture diffusivity of loamy to silty soils on marl, determined by the hot air method. J. Hydrol. 97(3), 235–250 (1988)

    Article  Google Scholar 

  60. Chapuis, R.P.: Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 41(5), 787–795 (2004)

    Article  Google Scholar 

  61. Park, E., Smucker, A.: Saturated hydraulic conductivity and porosity within macro aggregates modified by tillage. Soil Sci. Soc. Am. J. 69(1), 38–45 (2005)

    Article  Google Scholar 

  62. Zhou, X., Lin, H.S., White, E.A.: Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. CATENA 73(2), 18–188 (2008)

    Article  Google Scholar 

  63. Matthews, G.P., Laudone, G.M., Gregory, A.S., Bird, N.R.A., Matthews, A.G., Whalley, W.R.: Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resour. Res. 10.1029/2009WR007720 (2010)

    Google Scholar 

  64. Zhang, X.C., Norton, L.D.: Effect of exchangeable mg on saturated hydraulic conductivity disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260(1–4), 194–205 (2002)

    Article  Google Scholar 

  65. Lado, M., Paz, A., Ben-Hur, M.: Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68(1), 234–242 (2004)

    Article  Google Scholar 

  66. Dusa, A.A.: Effect of bulk density on saturated hydraulic conductivity. J. Eng. Appl. Sci. 5(1), 159–165 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islam, A., Mailapalli, D.R., Behera, A. (2019). Comparison of Saturated Hydraulic Conductivity Methods for Sandy Loam Soil with Different Land Uses. In: Rathinasamy, M., Chandramouli, S., Phanindra, K., Mahesh, U. (eds) Water Resources and Environmental Engineering I. Springer, Singapore. https://doi.org/10.1007/978-981-13-2044-6_10

Download citation

Publish with us

Policies and ethics