Skip to main content

Two Aspects of Śūnyatā in Quantum Physics: Relativity of Properties and Quantum Non-separability

  • Chapter
  • First Online:
Quantum Reality and Theory of Śūnya

Abstract

The so-called paradoxes of quantum physics are easily disposed of as soon as one accepts that there are no such things as intrinsically existing particles and their intrinsic properties, but that both particles and properties are relational “observables.” Accordingly, quantum physics does not offer a “description of the outer world,” but rather a prescription about how to make probabilistic predictions within a participatory environment. The latter view (or rather criticism of views) looks quite radical with respect to standard Western Aristotelian ontology; but it looks natural in the context of the Indian-Buddhist concept of Pratītyasamutpāda which underpins Śūnyatā. Special attention will then be devoted to the quantum feature of non-separability, which displays remarkable similarities with Pratītyasamutpāda. Finally, the meaning of such twofold parallel between quantum physics and Śūnyatā will be discussed. This parallel will be related to the similarity of epistemological situation between knowing a world from which we are not entirely separated and knowing oneself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Ref. [1].

  2. 2.

    This (imaginary) machine comprises a fragment of radioactive matter having one chance in two of disintegrating over the time of 1 h and a flask of poison which is released when the disintegration occurs. If the poison is released, it kills the cat1[2].

  3. 3.

    This (imaginary) machine comprises a fragment of radioactive matter having one chance in two of disintegrating over the time of 1 h and a flask of poison which is released when the disintegration occurs. If the poison is released, it kills the cat.

  4. 4.

    HH the Dalai-Lama, The Universe in a Single Atom, op. cit. p. 67: “Each of these (physical) pictures is excellent in its own right and for the purpose for which it has been designed, but if we believe any of these models to be constituted by intrinsically real things, we are bound to be disappointed.”

  5. 5.

    Samyutta Nikāya, II, p. 10, quoted by: Encyclopedia of Buddhism, IV, 1, p. 2, Sri Lanka Government Printing, 1979.

  6. 6.

    I. Newton, The Principia (Mathematical Principles of Natural Philosophy), University of California Press, 1999, Book I, sect. 11, Scholium, p. 588.

  7. 7.

    I. Newton, The Principia (Mathematical Principles of Natural Philosophy), p. 796.

  8. 8.

    Katthāvatthu, XV, 2, quoted by J. Macy, Mutual Causality in Buddhism and General System Theory, SUNY Press, 1991, p. 57.

  9. 9.

    Samyutta-Nikāya, II, 114, quoted by J. Macy, Mutual Causality in Buddhism and General System Theory, op. cit. p. 55.

  10. 10.

    Candrakīrti, Madhyamakāvatāra, Trad. L. de la Vallée-Poussin, Le Muséon, 1911, p. 277–278, quoted by L. Viévard, Vacuité et compassion dans le bouddhisme madhyamaka, De Boccard, 2002, p. 44.

  11. 11.

    Nāgārjuna, Acintyastava (42–43), in C. Lindtner, Master of Wisdom, op. cit. p. 27.

  12. 12.

    A. Einstein, B. Podolsky and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Physical Review, 47, 777–780, 1935. About the relation between the EPR argument and dependent origination, see HH the Dalai-Lama, The Universe in a Single Atom, op. cit. p. 64.

  13. 13.

    E. Schrödinger, “Discussion of probability relations between separated systems,” Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555–563, 1935; see a comment in: H.J. Treder and H.H. von Borzeszkowski, “Interference and interaction in Schrödinger’s wave mechanics,” Foundations of Physics, 18, 77–93, 1988.

  14. 14.

    E. Schrödinger, “Discussion of probability relations between separated systems,” loc. cit.

  15. 15.

    Nāgārjuna, Sūnyatāsaptati (6), in: C. Lindtner, Master of Wisdom, op. cit. p. 97.

  16. 16.

    Nāgārjuna, Mūlamadhyamakakarikā, I, 3, in J. Garfield, The Fundamental Wisdom of the Middle Way, op. cit.

  17. 17.

    Candrakīrti, Prasannapdā, quoted by: C.N. Huntington & Geshé Namgyal Wangchen, The Emptiness of Emptiness, University of Hawaii Press, 1989, p. 50.

  18. 18.

    Nāgārjuna, Mūlamadhyamakakarikā, XIII, 7. Translated by D. Kalupahana, Motilal Banarsidass, 1996.

  19. 19.

    Aristotle, Metaphysics, 1046b 29.

  20. 20.

    Nāgārjuna, Mūlamadhyamakakarikā, II, 14–15, in J. Garfield, The Fundamental Wisdom of the Middle Way, op. cit.

  21. 21.

    Nāgārjuna, Mūlamadhyamakakarikā, VII, 13, 17–20.

  22. 22.

    Nāgārjuna, Mūlamadhyamakakarikā, II, 1.

  23. 23.

    HH the Dalai-Lama, The Universe in a Single Atom, op. cit. p. 68.

References

  1. Einstein A. Oeuvres choisies, 1 Quanta. Seuil: CNRS Editions; 1989.

    Google Scholar 

  2. HH the Dalai-Lama. The universe in a single atom. Burlington: Morgan Road Books; 2005. p. 69.

    Google Scholar 

  3. Zajonc A, Greenstein. The quantum challenge: modern research on the foundations of quantum. Burlington: Jones & Bartlett Publishers; 1997.

    Google Scholar 

  4. Smerlak M, Rovelli C. “Relational EPR”. Found Phys. 2007;37:427–445; Bitbol M. “An analysis of the Einstein-Podolsky-Rosen correlations in terms of events”. Phys Lett. 1983;96A:66–70.

    Google Scholar 

  5. Mohrhoff U. “The world according to quantum mechanics (Or the 18 errors of Henry P. Stapp)”. Found Phys. 2002;32(2):217–254; Bitbol M. “Consciousness, situations, and the measurement problem of quantum mechanics”. NeuroQuantology. 2008;6:203–13.

    Google Scholar 

  6. Zeilinger A. « Foundational principle for quantum mechanics ». Found Phys. 1999;29:631–43; Fuchs CA. « Quantum mechanics (and only a little more) ». In: Khrennikov A, editors. Quantum theory: reconsideration of foundations. Växjo: Växjo University Press; 2002; Grinbaum A. « Elements of information-theoretic derivation of the formalism of quantum theory ». Int J Quantum Inf. 2003;1:289–300.

    Google Scholar 

  7. Gröblacher S, Paterek T, Kaltenbaek R, Brukner C, Zukowski M, Aspelmeyer M, Zeilinger A. An experimental test of non-local realism. Nature. 2007;446:871–5.

    Article  Google Scholar 

  8. Lévy-Leblond JM, Balibar F. Quantique: rudiments. Paris: Interéditions; 1984.

    Google Scholar 

  9. Destouches-Février P. La structure des théories physiques. Paris: P.U.F; 1951.

    Google Scholar 

  10. Schrödinger E. “The present situation in quantum mechanics”. In: Wheeler JA, Zurek WH, editors. Quantum theory and measurement. Princeton University Press: Princeton; [1935] 1983.

    Google Scholar 

  11. Lyre H. “Against measurement? – on the concept of information”. In: Blanchard P, Jadczyk, A, editors. Quantum future: from volta and como to present and beyond. Berlin: Springer; 1999; Lyre H “Against measurement? – on the concept of information”. In: Blanchard P, Jadczyk, A, editors. Quantum future: from volta and como to present and beyond. Berlin: Springer; 1999; Bitbol M. “Decoherence and the constitution of objectivity”. In: Bitbol M, Kerszberg P, Petitot J, editors. Constituting objectivity: transcendental perspectives on modern physics. Berlin: Springer; 2009.

    Google Scholar 

  12. Bitbol M. La mécanique quantique comme théorie des probabilités généralisée. In: Klein E, Sacquin Y, editors. Prévision et probabilités dans les sciences. Paris: Editions Frontières; 1998.

    Google Scholar 

  13. Einstein A, Podolsky B, Rosen N. “Can quantum-mechanical description of reality be considered complete ?” In: Wheeler JA, Zurek WH, editors. Quantum theory and measurement, Princeton University Press: Princeton; [1935] 1983.

    Google Scholar 

  14. Espagnat B. d’ (1994), Le réel voilé, Paris: Fayard.

    Google Scholar 

  15. Bell JS. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press; 1987. Bell’s theorem establishes the incompatibility of quantum mechanics with certain inequalities (the Bell inequalities) which inevitably result from theories with local hidden variables.

    Google Scholar 

  16. Suarez A. Quantum mechanics versus multisimultaneity in experiments with acousto-optic choice devices. Phys Lett. 2000;A269:293–302.

    Article  Google Scholar 

  17. Bohm D. Wholeness and implicate order. London: Ark Paperbacks; 1984.

    Google Scholar 

  18. Bitbol M. “An analysis of the Einstein-Podolsky-Rosen correlations in terms of events”. Phys Lett 1983;96A:66–70; Smerlak M, Rovelli C. “Relational EPR”. Found Phys. 2007;37:427–45.

    Article  Google Scholar 

  19. Brukner C, Zeilinger A. Information invariance and quantum probabilities. Found Phys. 2009;39:677–89.

    Article  Google Scholar 

  20. Scully MO, Drühl K. “Quantum eraser: a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantum mechanics”. Phys Rev A. 1982;25:2208–2213; Elitzur AC, Dolev S, Zeilinger A. “Time-reversed EPR and the choice of histories in quantum mechanics”. In: Proceedings of XXIISolvay conference in physics. Singapore: World Scientific; 2003. p. 452–61.

    Google Scholar 

  21. Elitzur AC, Vaidman L. Quantum mechanical interaction-free measurements. Found Phys. 1993;23:987–97.

    Article  Google Scholar 

  22. Bruza P, Sofge D, Lawless W, van Rijsbergen CJ, Klusch M, editors. Quantum interaction. Berlin: Springer; 2009a; Busemeyer J, Bruza P. Quantum models of cognition and decision. Cambridge: Cambridge University Press; 2014.

    Google Scholar 

  23. Zwirn H. Formalisme quantique et préférences indéterminées en théorie de la décision. In: Bitbol M, editor. Théorie quantique et sciences humaines. Paris: CNRS Editions; 2009.

    Google Scholar 

  24. Bruza PD, Kitto K, Nelson D, McEvoy C. Is there something quantum-like about the human mental lexicon? J Math Psychol. 2009b;53:362–77.

    Article  Google Scholar 

  25. Stengers I. Cosmopolitiques 4: Mécanique quantique, la fin du rêve. Paris: La Découverte; 1997.

    Google Scholar 

  26. Thom R. Prédire n’est pas expliquer. Paris: Flammarion; 1993.

    Google Scholar 

  27. Scheler M. Problèmes de sociologie de la connaissance. Paris: Presses Universitaires de France; 1993.

    Google Scholar 

  28. Schrödinger E. Nature and the Greeks. Cambridge: Cambridge University Press; 1954.

    Google Scholar 

  29. Seamon D, Zajonc A, editors. Goethe’s way of science. Albany: SUNY Press; 1998.

    Google Scholar 

  30. Kant I. Inaugural dissertation of 1770. Whitefish: Kessinger Publishing; [1770] 2004.

    Google Scholar 

  31. Descartes R. Œuvres Philosophiques IV. Paris: Hachette; 1835. p. 30.

    Google Scholar 

  32. Descartes R. Les principes de la philosophie II. In: Œuvres Philosophiques III. Paris: Garnier; 1973. p. 195.

    Google Scholar 

  33. Schlick M. Philosophical papers II (1925–1936). Dordrecht: Reidel; 1979. p. 26.

    Google Scholar 

  34. Schrödinger E. Discussion of probability relations between separated systems. Proc Camb Philos Soc. 1935;31:555–63.

    Article  Google Scholar 

  35. Mermin ND. What is quantum mechanics trying to tell us ? Am J Phys. 1998;66:753–67.

    Article  Google Scholar 

  36. Mermin ND. The Ithaca interpretation of quantum mechanics. Pramana. 1998;51:549–65.

    Article  Google Scholar 

  37. Quine WVO., “Grades of discriminability”. J Philos. 1976;73:113–16; Saunders S. “Physics and Leibniz’s principles”. In: Brading K, Castellani E, editors. Symmetries in physics: new reflections. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  38. Candrakīrti. Madhyamakāvatāra, 6, 17. In: Huntington CN, Wangchen GN, editors. The emptiness of emptiness. Hon- olulu: University of Hawaii Press; 1989. p. 159.

    Google Scholar 

  39. Nāgārjuna. Mūlamadhyamakakarikā, I, 7. In: Garfield J, editor. The fundamental wisdom of the middle way. Oxford: Oxford University Press; 1995.

    Google Scholar 

  40. Suarez A. « Quantum mechanics versus multisimultaneity in experiments with acousto-optic choice-devices ». Phys Lett. 2000;A269:293–302; Stefanov A, Zbinden H, Gisin N, Suarez A. « Quantum entanglement with acousto-optic modulators: 2-photon beatings and Bell experiments with moving beamsplitters ». Phys Rev. 2003;A67:042115.

    Google Scholar 

  41. Stcherbatsky T. The conception of Buddhist Nirvāna. Leningrad: Academy of Science of the USSR; 1927.

    Google Scholar 

  42. Cabello A. « Quantum correlations are not local elements of reality », loc. cit. ». Phys Rev. 1999;A59:113–15; Cabello A. « Quantum correlations are not contained in the initial state». Phys Rev. 1999;A 60:877–80; 1999.

    Google Scholar 

  43. Smerlak M, Rovelli C. Relational EPR. Found Phys. 2007;37:427–45.

    Article  Google Scholar 

  44. Kant I. Critique of pure reason, B278. Indianapolis: Hackett; 1996. p. 291.

    Google Scholar 

  45. Mehlberg H. Time, causality, and the quantum theory I. Dordrecht: Reidel; 1980.

    Book  Google Scholar 

  46. Augustine S. Confessions. Oxford: Oxford University Press; 1998.

    Google Scholar 

  47. Page DN, Wootters WK. « Evolution without evolution: dynamics described by stationary observables ». Phys Rev; 1983:D 27: 2885–92; also, Deutsch D. « Three experimental implications of the Everett interpretation » In: Penrose R, Isham IJ, editors. Quantum concepts in time and space. Oxford: Oxford University Press; 1986.

    Google Scholar 

  48. Barbour J. The end of time. London: Phoenix Paperbacks; 2000.

    Google Scholar 

  49. Rovelli C. “Relational quantum mechanics”. Int J Theor Phys. 1996;35:1637–57; Smerlak M, Rovelli C. “Relational EPR”, op. cit.

    Article  Google Scholar 

  50. Destouches-Février P. La structure des théories physiques. Paris: Presses Universitaires de France; 1951. p. 260–80; see Bitbol M. “A cure for metaphysical illusions: kant, quantum mechanics and madhyamaka”. In: Wallace BA, editors. Buddhism and science. Columbia: Columbia University Press; 2003.

    Google Scholar 

  51. Finkelstein DR. Emptiness and relativity. In: Wallace A, editor. Buddhism and science. Columbia: Columbia University Press; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bitbol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bitbol, M. (2019). Two Aspects of Śūnyatā in Quantum Physics: Relativity of Properties and Quantum Non-separability. In: Bhatt, S.R. (eds) Quantum Reality and Theory of Śūnya. Springer, Singapore. https://doi.org/10.1007/978-981-13-1957-0_6

Download citation

Publish with us

Policies and ethics