Skip to main content

A New Electronically Tunable CM/VM Oscillator Using All Grounded Components

  • Conference paper
  • First Online:
Applications of Artificial Intelligence Techniques in Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 697))

Abstract

With the use of two Voltage Differencing Current Conveyers (VDCC) as active building blocks, and three passive elements, i.e., one resistor and two capacitors, an electronically tunable sinusoidal oscillator has been designed. The proposed configuration offers advantages like low component count, use of grounded elements, and attainment of an independent condition of oscillation (C.O.) and frequency of oscillation (F.O.). Dual-mode operation and efficient integrated circuit implementation due to use of all grounded capacitors improve the performance of the design. The graphical results using PSPICE simulation software, for verifying the functionality of the designed oscillator, have been obtained by employing CMOS structure of VDCC as well as off-the-shelf realization using OPA860.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senani, R., Bhaskar, D.R., Gupta, M., Singh, A.K.: Canonic OTA-C sinusoidal oscillators: generation of new grounded-capacitor versions. American J. Electr. Electron. Eng. 3, 137–146 (2015)

    Google Scholar 

  2. Arora, T.S., Rana, U.: Multifunction filter employing current differencing buffered amplifier. J. Circuits Sys. 7, 543–550 (2016)

    Article  Google Scholar 

  3. Senani, R., Sharma, R.K.: Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp. J. IEICE Electron. Express 2, 14–18 (2005)

    Article  Google Scholar 

  4. Minaei, S., Yuce, E.: All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits Sys. Sig. Process. 29, 295–309 (2010)

    Article  Google Scholar 

  5. Sharma, R.K., Arora, T.S., Senani, R.: On the realization of canonic single-resistance-controlled oscillators using third generation current conveyers. J IET Circuits Devices Sys. 11, 10–20 (2017)

    Article  Google Scholar 

  6. Prasad, D., Bhaskar, D.R., Srivastava, M.: New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electronics 18(2), 81–88 (2014)

    Google Scholar 

  7. Senani, R., Bhaskar, D.R., Singh, V.K., Sharma, R.K.: Sinusoidal Oscillators and Waveform Generators Using Modern Electronic Circuit Building Blocks. Springer, New Delhi, India (2016)

    Book  Google Scholar 

  8. Ozcan, S., Toker, A., Acar, C., Kuntman, H., Cicekoglu, O.: Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. J. Microelectronics 31, 169–174 (2000)

    Article  Google Scholar 

  9. Kalra, D., Gupta, S., Arora, T. S.: Single-resistance-controlled quadrature oscillator employing two current differencing buffered amplifier. In: IEEE International Conference on Contemporary Computing and Informatics (IC3I), pp. 688–692 (2016)

    Google Scholar 

  10. Un, M., Kacar, F.: Third generation current conveyor based current-mode first order all-pass filter and quadrature oscillator. J. Electr. Electron. Eng. 8, 529–535 (2008)

    Google Scholar 

  11. Abdalla, K.K., Bhaskar, D.R., Senani, R.: Configuration for realizing a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. J IET Circuits Devices Sys. 6, 159–167 (2012)

    Article  Google Scholar 

  12. Toker, A., Cicekoglu, O., Kuntman, H.: On the oscillator implementations using a single current feedback op-amp. J. Comput. Electr. Eng. 28, 375–389 (2002)

    Article  Google Scholar 

  13. Chen, H.P., Wang, S.F., Ku, Y.T., Hsieh, M.Y.: Quadrature oscillators using two CFOAs and four passive components. J. IEICE Electron. Express 12, 1–8 (2015)

    Google Scholar 

  14. Srivastava, M., Prasad, D.: VDCC based dual-mode quadrature sinusoidal oscillator with outputs at appropriate impedance levels. Adv. Electr. Electron. Eng. 14(2), 168–177 (2016)

    Google Scholar 

  15. Gupta, M., Arora, T.S.: Realisation of current mode universal filter and a dual-mode single resistance controlled quadrature oscillator employing VDCC and grounded passive elements. Adv. Electr. Electr. Eng. 15, 833–845 (2017)

    Google Scholar 

  16. Kaçar, F., Yeşil, A., Minaei, S., Kuntman, H.: Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int. J. Electron. Commun. 68, 73–78 (2014)

    Article  Google Scholar 

  17. Kaçar, F., Yeşil, A., Gürkan, K.: Design and experiment of VDCC-based voltage mode universal filter. Indian J. Pure Appl. Phy. (IJPAP) 53(5), 341–349 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajinder Singh Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Sandhu, M., Gupta, M., Arora, T.S. (2019). A New Electronically Tunable CM/VM Oscillator Using All Grounded Components. In: Malik, H., Srivastava, S., Sood, Y., Ahmad, A. (eds) Applications of Artificial Intelligence Techniques in Engineering . Advances in Intelligent Systems and Computing, vol 697. Springer, Singapore. https://doi.org/10.1007/978-981-13-1822-1_13

Download citation

Publish with us

Policies and ethics