Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1099))

Abstract

Pain plays an important role in alerting the body to potential tissue injury and drives behavior that protects the body from further harm. In contrast, chronic pain does not serve this function and instead only provides a persistent sensation of pain and a negative experience. The mesolimbic dopaminergic system has been recognized to play a central role in motivated behaviors, including various types of reward and pleasure. Many dopaminergic neurons may release multiple neurotransmitters, and the physiological role of the co-release of these transmitters has been revealed incrementally. However, it was not yet clear whether the mesolimbic dopaminergic system and small molecules released in the nucleus accumbens (N.Acc.), the input region of mesolimbic dopaminergic neurons, are involved in pain modulation. Recently, we revealed that the mesolimbic dopaminergic system and small molecules released in the N.Acc. could contribute to pain modulation. In this review, we provide an overview of the relationship between pain and the brain reward circuit using a combination of optogenetics, electrophysiology, and in vivo microdialysis/mass spectrometry integrated system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50(3):507–517. https://doi.org/10.1016/j.neuron.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  2. Baliki MN, Geha PY, Fields HL, Apkarian AV (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66(1):149–160. https://doi.org/10.1016/j.neuron.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141. https://doi.org/10.1016/j.neuron.2005.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Becker S, Ceko M, Louis-Foster M, Elfassy NM, Leyton M, Shir Y, Schweinhardt P (2013) Dopamine and pain sensitivity: neither sulpiride nor acute phenylalanine and tyrosine depletion have effects on thermal pain sensations in healthy volunteers. PLoS One 8(11):e80766. https://doi.org/10.1371/journal.pone.0080766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Becker S, Gandhi W, Schweinhardt P (2012) Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett 520(2):182–187. https://doi.org/10.1016/j.neulet.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Berger A, Dukes EM, Oster G (2004) Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain 5(3):143–149. https://doi.org/10.1016/j.jpain.2003.12.004

    Article  PubMed  Google Scholar 

  7. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191(3):391–431. https://doi.org/10.1007/s00213-006-0578-x

    Article  CAS  Google Scholar 

  8. Blanchet PJ, Brefel-Courbon C (2017) Chronic pain and pain processing in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. https://doi.org/10.1016/j.pnpbp.2017.10.010

    Article  PubMed  Google Scholar 

  9. Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I (2016) Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 68:282–297. https://doi.org/10.1016/j.neubiorev.2016.05.033

    Article  CAS  PubMed  Google Scholar 

  10. Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106(12):4894–4899. https://doi.org/10.1073/pnas.0811507106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. https://doi.org/10.1016/j.neuron.2010.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D’Ardenne K, McClure SM, Nystrom LE, Cohen JD (2008) BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319(5867):1264–1267. https://doi.org/10.1126/science.1150605

    Article  CAS  PubMed  Google Scholar 

  13. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337. https://doi.org/10.1001/archpsyc.64.3.327

    Article  CAS  PubMed  Google Scholar 

  14. Fields HL (1999) Pain: an unpleasant topic. Pain Suppl 6:S61–S69

    Article  Google Scholar 

  15. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39. https://doi.org/10.1016/S0074-7742(06)78001-1

    Article  CAS  PubMed  Google Scholar 

  17. Inoue K (2009) Neurotransmitter. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 2834–2834. https://doi.org/10.1007/978-3-540-29678-2_3952

    Chapter  Google Scholar 

  18. Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71(3):683–732

    Article  CAS  PubMed  Google Scholar 

  19. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Pt B):351–359. https://doi.org/10.1016/j.neuropharm.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  20. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217. https://doi.org/10.1038/nature11527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9(4):314–320. https://doi.org/10.1038/nrn2333

    Article  CAS  PubMed  Google Scholar 

  22. Loggia ML, Berna C, Kim J, Cahalan CM, Gollub RL, Wasan AD, Harris RE, Edwards RR, Napadow V (2014) Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis Rheumatol 66(1):203–212. https://doi.org/10.1002/art.38191

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cowan MW, (2001). A brief history of synapses and synaptic transmission

    Google Scholar 

  24. Maeda T, Shimo Y, Chiu SW, Yamaguchi T, Kashihara K, Tsuboi Y, Nomoto M, Hattori N, Watanabe H, Saiki H, Group J-F (2017) Clinical manifestations of nonmotor symptoms in 1021 Japanese Parkinson’s disease patients from 35 medical centers. Parkinsonism Relat Disord 38:54–60. https://doi.org/10.1016/j.parkreldis.2017.02.024

    Article  PubMed  Google Scholar 

  25. Mantyh P (2013) Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain 154(Suppl 1):S54–S62. https://doi.org/10.1016/j.pain.2013.07.044

    Article  PubMed  Google Scholar 

  26. Martikainen IK, Nuechterlein EB, Peciña M, Love TM, Cummiford CM, Green CR, Stohler CS, Zubieta JK (2015) Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci 35(27):9957–9965. https://doi.org/10.1523/JNEUROSCI.4605-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McWilliams LA, Cox BJ, Enns MW (2003) Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain 106(1–2):127–133

    Article  PubMed  Google Scholar 

  28. Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S (2017) Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife 6. doi:https://doi.org/10.7554/eLife.27566

  29. Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379(6564):449–451. https://doi.org/10.1038/379449a0

    Article  CAS  PubMed  Google Scholar 

  30. Morales M, Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18(2):73–85. https://doi.org/10.1038/nrn.2016.165

    Article  CAS  PubMed  Google Scholar 

  31. Navratilova E, Porreca F (2014) Reward and motivation in pain and pain relief. Nat Neurosci 17(10):1304–1312. https://doi.org/10.1038/nn.3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 109(50):20709–20713. https://doi.org/10.1073/pnas.1214605109

    Article  PubMed  PubMed Central  Google Scholar 

  33. Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T (2010) Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission. Trends Pharmacol Sci 31(7):299–305. https://doi.org/10.1016/j.tips.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  34. Ozaki S, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T (2002) Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem 82(5):1192–1198

    Article  CAS  PubMed  Google Scholar 

  35. Ramdani C, Carbonnell L, Vidal F, Béranger C, Dagher A, Hasbroucq T (2015) Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology (Berl) 232(2):477–487. https://doi.org/10.1007/s00213-014-3686-z

    Article  CAS  Google Scholar 

  36. Rebouças EC, Segato EN, Kishi R, Freitas RL, Savoldi M, Morato S, Coimbra NC (2005) Effect of the blockade of mu1-opioid and 5HT2A-serotonergic/alpha1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl) 179(2):349–355. https://doi.org/10.1007/s00213-004-2045-x

    Article  CAS  Google Scholar 

  37. Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X, Kondapalli J, Apkarian AV, Martina M, Surmeier DJ (2016) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19(2):220–222. https://doi.org/10.1038/nn.4199

    Article  CAS  PubMed  Google Scholar 

  38. Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134(1–2):140–147. https://doi.org/10.1016/j.pain.2007.04.003

    Article  PubMed  Google Scholar 

  39. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485. https://doi.org/10.1016/j.neuron.2012.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263

    Article  CAS  PubMed  Google Scholar 

  41. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30(5):203–210. https://doi.org/10.1016/j.tins.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  42. Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64. https://doi.org/10.1016/j.brainres.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  43. Stubbs B, Thompson T, Acaster S, Vancampfort D, Gaughran F, Correll CU (2015) Decreased pain sensitivity among people with schizophrenia: a meta-analysis of experimental pain induction studies. Pain 156(11):2121–2131. https://doi.org/10.1097/j.pain.0000000000000304

    Article  PubMed  Google Scholar 

  44. Watanabe M, Narita M, Hamada Y, Yamashita A, Tamura H, Ikegami D, Kondo T, Shinzato T, Shimizu T, Fukuchi Y, Muto A, Okano H, Yamanaka A, Tawfik VL, Kuzumaki N, Navratilova E, Porreca F (2018) Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain 14. 1744806918756406. doi:https://doi.org/10.1177/1744806918756406

    Article  Google Scholar 

  45. Watanabe M, Sugiura Y, Sugiyama E, Narita M, Navratilova E, Kondo T, Uchiyama N, Yamanaka A, Kuzumaki N, Porreca F (2018) Extracellular N-acetylaspartylglutamate released in the nucleus accumbens modulates the pain sensation: analysis using a microdialysis/mass spectrometry integrated system. Mol Pain 14. 1744806918754934. doi:https://doi.org/10.1177/1744806918754934

    Article  Google Scholar 

  46. Wiech K, Tracey I (2013) Pain, decisions, and actions: a motivational perspective. Front Neurosci 7:46. https://doi.org/10.3389/fnins.2013.00046

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8(5):781–797. https://doi.org/10.1586/14737175.8.5.781

    Article  CAS  PubMed  Google Scholar 

  48. Wood PB, Patterson JC, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8(1):51–58. https://doi.org/10.1016/j.jpain.2006.05.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities No.S1411019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Narita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watanabe, M., Narita, M. (2018). Brain Reward Circuit and Pain. In: Shyu, BC., Tominaga, M. (eds) Advances in Pain Research: Mechanisms and Modulation of Chronic Pain. Advances in Experimental Medicine and Biology, vol 1099. Springer, Singapore. https://doi.org/10.1007/978-981-13-1756-9_17

Download citation

Publish with us

Policies and ethics