Skip to main content

Thermodynamic Studies of Supramolecular Systems

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 204 Accesses

Abstract

Supramolecular chemistry is highly interdisciplinary in various fields due to host-guest interactions. Since most non-covalent interactions are relatively weak, many supramolecular systems are under thermodynamic control. Traditionally, thermodynamics in understanding the factors contributing to complex stability and selectivity is important in supramolecular systems. Therefore, we focus on a summary of thermodynamics of supramolecular systems in this chapter. Firstly, we will discuss thermodynamic parameters based on various methods, in particularly ITC method. Then related thermodynamic researches on the applications of macrocyclic hosts including cyclodextrins, crown ethers, calixarenes, and cucurbiturils will be summarized. We hope this chapter could provide more thoughts or inspirations for thermodynamic analysis in supramolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schmeck HM Jr (1987) Chemistry and physics Nobels hail discoveries on life and superconductors; three share prize for synthesis of vital enzymes. New York Times. 15 Oct 1987

    Google Scholar 

  2. Freeman WA (1984) Structures of the p-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand ‘cucurbituril’, C36H36N24O12. Acta Cryst 40:382–387

    Article  Google Scholar 

  3. Witlicki EH, Hansen SW, Christensen M, Hansen TS, Nygaard SD, Jeppesen JO, Wong EW, Jensen L, Flood AH (2009) Determination of binding strengths of a host–guest complex using resonance Raman scattering. J Phys Chem 113:9450–9457

    Article  CAS  Google Scholar 

  4. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  6. Bhalla V (2018) Supramolecular chemistry from molecule to molecular machines. Resonace 23(3):277–290

    Article  CAS  Google Scholar 

  7. Li N, Chen Y, Zhang Y-M, Li Z-Q, Liu Y (2010) Binding thermodynamics of quinolinyl-modified β -cyclodextrins with bile salts. Sci China Ser B: Chem 40:1355–1362

    Google Scholar 

  8. Li N, Chen Y, Zhang Y-M, Wang L-H, Mao W-Z, Liu Y (2014) Molecular binding thermodynamics of spherical guests by beta-cyclodextrins bearing aromatic substituents. Thermoch Acta 576:18–26

    Article  CAS  Google Scholar 

  9. Kubik S (2009) Amino acid containing anion receptors. Chem Soc Rev 38(2):585–605

    Article  CAS  PubMed  Google Scholar 

  10. Cragg PJ, Sharma K (2012) Pillar[5]arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41(2):597–607

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Li L, Chen Y, Yu L, Fan Z, Ding F (2005) Molecular recognition thermodynamics of bile salts by β-cyclodextrin dimers: factors governing the cooperative binding of cyclodextrin dimers. J Phys Chem B 109:4129–4134

    Article  CAS  PubMed  Google Scholar 

  12. Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-β-Cyclodextrin. Biochemistry 43:2251–2261

    Article  CAS  PubMed  Google Scholar 

  13. Buczkowski A, Palecz B, Grzegorz S (2019) Stoichiometry and thermodynamics of gemcitabine and cucurbituril Q7 supramolecular complexes in high acidic aqueous solution. J Mol Struct 1178:554–563

    Article  CAS  Google Scholar 

  14. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of Cyclodextrins. Chem Rev 98:1875–1917

    Article  CAS  PubMed  Google Scholar 

  15. Danylyuk O, Suwinska K (2009) Solid-state interactions of calixarenes with biorelevant molecules. Chem Commun 2009(39):5799–5813

    Article  CAS  Google Scholar 

  16. Buschmann H-J, Mutihac L, Schollmeyer E (2009) The formation of homogeneous and heterogeneous 2:1 complexes between dialkyl- and diaryl-ammonium ions and a-cyclodextrin and cucurbit[6]uril in aqueous formic acid. Thermochim Acta 495:28–32

    Article  CAS  Google Scholar 

  17. Chen Z, Weber SG (2008) Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Anal Chem 27:738–748

    Article  CAS  Google Scholar 

  18. Grechin AG, Buschmann H-J, Schollmeyer E (2007) Supramolecular solid–gas complexes: a thermodynamic approach. Angew Chem Int Ed 46:6499–6501

    Article  CAS  Google Scholar 

  19. Danil de Namor AF (1992) Application of calorimetry (macro and micro) to the study of host-guest interactions in solution, Indian. J Technol 30:593–603

    CAS  Google Scholar 

  20. Waters L, Leharne SEA, Mitchell JC (2005) Saturation determination of micellar systems using isothermal titration calorimetry. J Thermal Anal Calorim 80:43–47

    Article  CAS  Google Scholar 

  21. Lee AL, Sapienza PJ (2018) Thermodynamic and NMR assessment of ligand cooperativity and intersubunit communication in symmetric dimers: application to thymidylate synthase. Front Mol Biosci 5:1–12

    Article  CAS  Google Scholar 

  22. Amato ME, Djedaini-Pilard F, Perly B, Scarlata G (1992) High field NMR techniques and molecular modelling study of the inclusion complexes of the nootropic drug tenilsetam (CAS-997) in cyclodextrins. J Chem Soc Perkin Trans 2:2065–2069

    Article  Google Scholar 

  23. Cohen Y, Avram L, Frish L (2005) Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter – new insights. Angew Chem Int Ed 44:520–554

    Article  CAS  Google Scholar 

  24. Pastor A, MartÍnez-Viviente E (2008) NMR spectroscopy in coordination supramolecular chemistry: a unique and powerful methodology. Coorin Chem Rev 252:2314–2345

    Article  CAS  Google Scholar 

  25. Casy AF (1993) Chiral discrimination by NMR spectroscopy. Trends Anal Chem 12:185–189

    Article  CAS  Google Scholar 

  26. Deng S, Liu H-J, Qi C-X, Yang A-H, Li Z-D (2018) Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J Incl Phenom Macrocycl Chem 90:321–329

    Article  CAS  Google Scholar 

  27. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–754

    Article  Google Scholar 

  28. Pescitelli G, Di Bari L, Berova N (2014) Application of electronic circular dichroism in the study of supramolecular systems. Chem Soc Rev 43:5211–5233

    Article  CAS  PubMed  Google Scholar 

  29. Duchêne D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72

    Article  PubMed  CAS  Google Scholar 

  30. Ghoneim MM, El-Sonbati AZ, Diab MA, El-Bindary AA, Serag LS (2015) Supramolecular assembly on coordination of azopolymer complexes: a review. Polym-Plast Technol Eng 54:100–117

    Article  CAS  Google Scholar 

  31. Nowak PM, Woźniakiewicz M, Janus M, Kościelniak P (2017) Enhancing effectiveness of capillary electrophoresis as an analytical tool in the supramolecular acidity modification. Anal Bioanal Chem 409:3633–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christensen JJ, Izatt RM, Hansen LD, Partridge JM (1966) Entropy titration. A calorimetric method for the determination of ΔG, ΔH and ΔS from a single thermodynamic tritration. J Phys Chem 70:2003–2010

    Article  CAS  Google Scholar 

  33. Feng J-G, Svatoš V, Liu X-C, Chang H-L, Neužil p (2018) High-performance microcalorimeters: design, applications and future development. TrAC Trends Anal Chem 109:43–49

    Article  CAS  Google Scholar 

  34. Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduction 24:1–52

    Article  CAS  Google Scholar 

  35. Watson ES, O’Neill MJ, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238

    Article  CAS  Google Scholar 

  36. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950–959

    Article  Google Scholar 

  37. Waters LJ, Leharne SA, Mitchell JC (2005) Saturation determination of micellar systems using isothermal titration calorimetry. J Therm Anal Calorim 80:43–43

    Article  CAS  Google Scholar 

  38. Werber L, Mastai Y (2018) Isothermal titration calorimetry for chiral chemistry. Chirality 30:619–631

    Article  CAS  PubMed  Google Scholar 

  39. Christensen JJ, Izatt RM, Hansen LD (1965) New precision thermometric titration calorimeter. Rev Sci Instrum 36:779–783

    Article  CAS  Google Scholar 

  40. Searle MS, Williams DH, Gerhard U (1992) Partitioning of free energy contributions in the estimation of binding constants: residual motions and consequences for amide–amide hydrogen bond strengths. J Amer Chem Soc 114:10697–10704

    Article  CAS  Google Scholar 

  41. Eftink MR, Anusiem AC, Biltonen RL (1983) Enthalpy–entropy compensation and heat capacity changes for protein–ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease a. Biochemistry 22:3884–3896

    Article  CAS  PubMed  Google Scholar 

  42. Murphy KP, Xie D, Thompson KS, Amzel LM, Freire E (1994) Entropy in biological binding processes: estimation of translational entropy loss. Proteins 18:63–67

    Article  CAS  PubMed  Google Scholar 

  43. Gomez J, Hilser VJ, Xie D, Freire E (1995) The heat capacity of proteins. Proteins 22:404–412

    Article  CAS  PubMed  Google Scholar 

  44. Callies O, Daranas HH (2016) Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 33:881–904

    Article  CAS  PubMed  Google Scholar 

  45. Leffler JE (1955) The enthalpy-entropy relationship and its implications for organic chemistry. J Org Chem 20:1202–1231

    Article  CAS  Google Scholar 

  46. Stödeman M, Wadsö I (1995) Scope of microcalorimetry in the area of macrocycl ic chemistry. Pure Appl Chem 67:1059–1068

    Article  Google Scholar 

  47. Arena G (1989) Critical review of the caloritetric method for equilibrium constant determination. Thermochim Acta 155:353–376

    Article  CAS  Google Scholar 

  48. Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP (2010) Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release 147:377–384

    Article  CAS  PubMed  Google Scholar 

  49. Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 101:238–250

    Article  CAS  PubMed  Google Scholar 

  50. Othman M, Bouchemal K, Couvreur P, Desmaële D, Morvan E, Pouget T, Gref R (2011) A comprehensive study of the spontaneous formation of nanoassemblies in water by a ‘lock-and-key’ interaction between two associative polymers. J Colloid Interface Sci 354:517–527

    Article  CAS  PubMed  Google Scholar 

  51. Wszelaka-Rylik M, Gierycz P (2013) Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim 111:2029–2035

    Article  CAS  Google Scholar 

  52. Danil de Namor AF, Blackett PM, Cabaleiro MC, Al Rawl JMA (1994) Cyclodextrin-monosaccharide interactions in water. J Chem Soc Faraday Trans 90:845–847

    Article  Google Scholar 

  53. Hădărugă NG, Bandur GN, David I, Hădărugă DI (2019) A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ Chem Lett 17:349–373

    Article  CAS  Google Scholar 

  54. Hazra S, Kumar GS (2015) Physicochemical properties of inclusion complexes of sanguinarine with natural cyclodextrins: spectroscopy, calorimetry and NMR studies. RSC Adv 5:1873–1882

    Article  CAS  Google Scholar 

  55. Wszelaka-Rylik M, Gierycz P (2013) Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim 111:2029–2035

    Article  CAS  Google Scholar 

  56. Wszelaka-Rylik M, Gierycz P (2015) Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. J Therm Anal Calorim 121:1359–1364

    Article  CAS  Google Scholar 

  57. Holm R, Schönbeck C, Askjær S, Westh P (2013) Thermodynamics of the interaction of γ-cyclodextrin and tauro- and glyco-conjugated bile salts. J Incl Phenom Macrocycl Chem 75:223–233

    Article  CAS  Google Scholar 

  58. Saha S, Ray T, Basak S, Roy MN (2016) NMR, surface tension and conductivity studies to determine the inclusion mechanism: thermodynamics of host–guest inclusion complexes of natural amino acids in aqueous cyclodextrins. New J Chem 40:651–661

    Article  CAS  Google Scholar 

  59. Benkö M, Tabajdi R, Király Z (2013) Thermodynamics of formation of β-cyclodextrin inclusion complexes with four series of surfactant homologs. J Therm Anal Calorim 112:969–976

    Article  CAS  Google Scholar 

  60. Dang P-Y, Ye R-L, Meng F-Z, Han Y-B, Zhou Y-M, Gong X-D, Zhou B-J (2017) Microencapsulation thermodynamics of methylated β-cyclodextrins with bile salt: enthalpy, entropy, and solvent effect. J Incl Phenom Macrocycl Chem 88:181–189

    Article  CAS  Google Scholar 

  61. Matencio A, García-Carmona F, López-Nicolás JM (2016) Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct 7:2367–2373

    Article  CAS  PubMed  Google Scholar 

  62. Deng S-X, Liu H-J, Qi C-X, Yang A-X, Li A-D (2018) Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J Incl Phenom Macrocycl Chem 90:321–329

    Article  CAS  Google Scholar 

  63. Pedersen CJ (1967) J., cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  64. Irandoust M, Shamsipur M, Daraei H (2010) Proton NMR study of the stoichiometry, stability and thermodynamics of complexation of Rb+ ion with 18-crown-6 in binary dimethylsulfoxide–nitrobenzene mixtures. J Incl Phenom Macrocycl Chem 66:365–370

    Article  CAS  Google Scholar 

  65. Vendilo AG, Rönkkömäki H, Hannu-Kuure M, Lajunen M, Asikkala J, Krasovsky VG, Chernikova EA, Oksman P, Lajunen LHJ, Tuomi T, Popov KI (2010) Thermodynamics of cesium complexes formation with 18-crown-6 in ionic liquids. J Incl Phenom Macrocycl Chem 66:223–230

    Article  CAS  Google Scholar 

  66. Taghdiri M, Payehghadr M, Behjatmanesh-Ardakan R, Eslami N (2013) Conductometric studies of thermodynamics of complexation of Li+, Na+ and K+ ions with 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 in binary acetonitrile–nitromethane mixtures. J Incl Phenom Macrocycl Chem 77:375–383

    Article  CAS  Google Scholar 

  67. Usacheva TR, Sharnin VA, Matteoli E (2011) Effect of solvation on the thermodynamics of the formation of molecular complexes of 18-Crown-6 ether with Glycine in water–Dimethylsulfoxide solutions. Russ J Phys Chem A 85:1898–1902

    Article  CAS  Google Scholar 

  68. Usacheva TR, Sharnin VA (2015) A thermodynamic study of reactions of amino acids with crown ethers in nonaqueous media as examples of guest—host molecular complex formation. RussChemBull 64:2536–2544

    CAS  Google Scholar 

  69. Mutihac L, Lee JH, Kim JS, Vicens J (2011) Recognition of amino acids by functionalized calixarenes. Chem Soc Rev 40:2777–2796

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Zhao B-T, Zhang H-Y, Wada T, Inoue Y (2001) Molecular design of calixarenes. Part 3.1 Complexation thermodynamics of light lanthanoid nitrates with a novel p-tertbutylcalix[4]arene Schiff base in acetonitrile: an enhanced Eu3+selectivity by side-arm ligation. J Chem Soc Perkin Trans 2:1219–1223

    Article  CAS  Google Scholar 

  71. Danil de Namor AF, Matsufuji-Yasuda TT, Zegarra-Fernandez K, Webb OA, Gamouz AE (2013) An enchiridion of supramolecular thermodynamics: calix[N]arene (N=4,5,6) tertiary amide derivatives and their ionic recognition. Croat Chem Acta 86:1–19

    Article  CAS  Google Scholar 

  72. Sharma N, Kakkar R, Bansal P, Singh A, Ojha H, Pathak DP, Sharma RK (2019) Host–guest complexation studies of p-tertbutylcalix[4]arene against ions of interest for radiological decontamination. Inorg Chim Acta 484:111–124

    Article  CAS  Google Scholar 

  73. Li Q, Guo D-S, Qian H, Liu Y (2012) Complexation of p-Sulfonatocalixarenes with local Anaesthetics guests: binding structures, stabilities, and thermodynamic origins. Eur J Org Chem 21:3962–3971

    Article  CAS  Google Scholar 

  74. Guo D-S, Wang K, Liu Y (2008) Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution. J Incl Phenom Macrocycl Chem 62:1–21

    Article  CAS  Google Scholar 

  75. Liu Y, Yang E-C, Chen Y (2005) Intermolecular complexation thermodynamics between water-soluble calix[4]arenes and diazacycloalkanes. Thermochim Acta 429:163–166

    Article  CAS  Google Scholar 

  76. Liu Y, Yang E-C, Chen Y, Guo D-S, Ding F (2005) Molecular selective binding of pyridinium guest ions by water-soluble calix[4]arenes. Eur J Org Chem 2005(21):4581–4588

    Article  CAS  Google Scholar 

  77. Liu Y, Ma Y-H, Chen Y, Guo D-S, Li Q (2006) Molecular recognition thermodynamics of pyridine derivatives by sulfonatocalixarenes at different pH values. J Org Chem 71:6468–6473

    Article  CAS  PubMed  Google Scholar 

  78. Guo D-S, Wang L-H, Liu Y (2007) Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4, 5]arenes. J Org Chem 72:7775–7778

    Article  CAS  PubMed  Google Scholar 

  79. Liu Y, Han B-H, Chen Y-T (2002) Molecular recognition and complexation thermodynamics of dye guest molecules by modified cyclodextrins and calixarenesulfonates. J Phys Chem B 106:4678–4687

    Article  CAS  Google Scholar 

  80. Li Q, Guo D-S, Qian H, Liu Y (2012) Complexation of p-Sulfonatocalixarenes with local Anaesthetics guests: binding structures, stabilities, and thermodynamic origins. Eur J Org Chem 21:3962–3971

    Article  CAS  Google Scholar 

  81. Zhang G-M, Li Y-H, Zhao X, Chao JB, Zhang C-H, Wen G-M, Shuang S-M, Dong C (2012) Study on the intermolecular complexation behavior between p-sulfonatocalix[4]arene with L-tyrosine. J Incl Phenom Macrocyc Chem 72:473–479

    Article  CAS  Google Scholar 

  82. Mc Dermott SM, Rooney DA, Breslin CB (2012) Complexation study and spectrofluorometric determination of the binding constant for diquat and p-sulfonatocalix[4]arene. Tetrahedron 68:3815–3821

    Article  CAS  Google Scholar 

  83. Lavande N, Acuña N, Basílio N, Francisco V, Malkhede DD, Garcia-Rio L (2017) A journey from calix[4]arene to calix[6] and calix[8]arene reveals more than a matter of size. Receptor concentration affects the stability and stoichiometric nature of the complexes. Phys Chem Chem Phys 19:13640–13649

    Article  CAS  PubMed  Google Scholar 

  84. Behrend R, Meyer E, Rusche F (1905) Ueber Condensatiosprodukte aus Glycoluril und Formaldehyd. Liebigs Ann Chem 339:1–37

    Article  Google Scholar 

  85. Stancu AD, Buschmann HJ, Mutihac L (2013) Survey on thermodynamic properties for the complexation behaviour of some calixarene and cucurbituril receptors. J Incl Phenom Macrocycl Chem 75:1–10

    Article  CAS  Google Scholar 

  86. Logsdon LA, Schardon CL, Ramalingam V, Kwee SK, Urbach AR (2011) Nanomolar binding of peptides containing noncanonical amino acids by a synthetic receptor. J Am Chem Soc 133:17087–17092

    Article  CAS  PubMed  Google Scholar 

  87. González-Álvareza MJ, Carmona T, Evren E, Mendicuti F (2014) Binding of a neutral guest to cucurbiturils: photophysics, thermodynamics and molecular modelling. Supramol Chem 26:414–426

    Article  CAS  Google Scholar 

  88. Buczkowski A, Palecz B, Schroeder G (2019) Stoichiometry and thermodynamics of gemcitabine and cucurbituril Q7 supramolecular complexes in high acidic aqueous solution. J Supramol Struct 1178:554–563

    Article  CAS  Google Scholar 

  89. Miskolczy Z, Biczók L, Jablonkai I (2016) Multiple inclusion complex formation of protonated ellipticine with cucurbit[8]uril: thermodynamics and fluorescence properties. Supramol Chem 28:842–848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, N., Liu, Y. (2019). Thermodynamic Studies of Supramolecular Systems. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics