Skip to main content

Action Recognition Framework Based on Normalized Local Binary Pattern

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 713))

  • 520 Accesses

Abstract

Human action recognition in computer vision has become dexterous in detecting the abnormal activities to fortify safe events. This paper presents an efficient action recognition algorithm which is based on local binary pattern (LBP). The implementation of this approach can be used for action recognition in small premises such as ATM rooms by focusing on the LBP feature extraction via spatiotemporal relations. We also focus on decreasing the descriptor values by normalizing computed histogram bins. The results through ATM dataset demonstrate the enhancement in action recognition problem under different extensions. The normalized features obtained are classified using random forest classifier. In our study, it is shown that normalized version of LBP surpasses the conventional LBP descriptor with an average accuracy of 83%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damaševičius, R., Vasiljevas, M., Šalkevičius, J., Woźniak, M.: Human activity recognition in AAL environments using random projections. Comput. Math. Methods Med. 2016, Article ID 4073584, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ahad, M., Tan, J., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23(2), 255–281 (2010)

    Article  Google Scholar 

  3. Klaser, A., Marszalek, M., Schmid, C.: A spatiotemporal descriptor based on 3D-gradients. In: Proceedings of British Machine Vision Conference, pp. 995–1004 (2008)

    Google Scholar 

  4. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  5. Niebles, J.C., Li, F.-F: A hierarchical model of shape and appearance for human action classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  6. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, pp. 384–396 (2002)

    Google Scholar 

  7. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study for texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  9. Guo, Z. et al. Accurate, pupil center location with the SIFT descriptor and SVM classifier. Int. J. Patt. Recogn. Artif. Intell. 30(4), 1–15 (2016)

    Article  Google Scholar 

  10. Chakraborty, B., Holte, M.B., Moeslund, T.B., Gonzàlez, J.: Selective spatio-temporal interest points. Comput. Vis. Image Underst. 116(3), 396–410 (2012)

    Article  Google Scholar 

  11. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision (ECCV), vol. 3951, pp. 404–417 (2006)

    Chapter  Google Scholar 

  12. Abedin, Md.Z., Dhar, P., Deb, K.: Traffic sign recognition using SURF. In: Speeded up Robust Feature Descriptor and Artificial Neural Network Classifier, pp. 198–201 (2016)

    Google Scholar 

  13. Hu, R., Collomosse, J.: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. Comput. Vis. Image Understand. 117(7), 790–806 (2013)

    Article  Google Scholar 

  14. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and Binet–Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1932–1939 (2009)

    Google Scholar 

  15. Mahbub, U., Imtiaz, H., Ahad, M.A.R.: An optical flow based approach for action recognition. In: Computer and Information Technology (ICCIT), Dhaka, Bangladesh, pp. 646–651 (2011)

    Google Scholar 

  16. Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  17. Zhang, Y.X., Zhao, Y.Q., Liu, Y., Jiang, L.Q., Chen, Z.W.: Identification of Wood Defects Based on LBP Features, pp. 4202–4205 (2016)

    Google Scholar 

  18. Maksymiv, O., Rak, T., Peleshko, D.: Video-Based Flame Detection using LBP-Based Descriptor: Influences of Classifiers Variety on Detection Efficiency, pp. 42–48 (2017)

    Article  Google Scholar 

  19. Pietikäinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recogn. 33(1), 43–52 (2000)

    Article  Google Scholar 

  20. Pietikäinen, M., Zhao, M.G.: Two decades of local binary patterns: a survey. In: Bingham, E., Kaski, S., Laaksonen, J., Lampinen, J., (eds.), Advances in Independent Component Analysis and Learning Machines, Elsevier, pp. 175–210 (2015)

    Google Scholar 

  21. Pietik¨ainen, M., Ojala, T., Nisula, J., Heikkinen, J.: Experiments with two industrial problems using texture classification based on feature distributions. Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision, vol. 2354, no. 1, pp. 197–204 (1994)

    Google Scholar 

  22. Zhao, G., Pietikainen, M.: Dynamic texture recognition using volume local binary patterns. In: ECCV, Workshop on Dynamical Vision, pp. 165–177 (2006)

    Google Scholar 

  23. Huang, Y., Wang, Y., Tan, T.: Combining statistics of geometrical and correlative features for 3D face recognition. In: Proceedings of the British Machine Vision Conference, pp. 879–888 (2006)

    Google Scholar 

  24. Fehr, J.: Rotational Invariant Uniform Local Binary Patterns for Full 3D Volume Texture Analysis. FINSIG (2007)

    Google Scholar 

  25. Sanserwal, V., Tripathi, V., Pandey, M., Chen, Z.: Comparative Analysis of Various Feature Descriptors for Efficient ATM Surveillance Framework, vol. 10, no. 13, pp. 181–187 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singhal, S., Tripathi, V. (2019). Action Recognition Framework Based on Normalized Local Binary Pattern. In: Pati, B., Panigrahi, C., Misra, S., Pujari, A., Bakshi, S. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 713. Springer, Singapore. https://doi.org/10.1007/978-981-13-1708-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1708-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1707-1

  • Online ISBN: 978-981-13-1708-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics