Skip to main content

Antiaging and Neuroprotective Properties of Mediterranean Diet Components in Humans

  • Chapter
  • First Online:
Molecular Basis and Emerging Strategies for Anti-aging Interventions

Abstract

Mediterranean diet consists of fresh fruits, vegetables, legumes, whole grains, fish, olive oil, garlic, and red wine. Levels of saturated fats are very low in Mediterranean diet. Among Mediterranean diet components, fresh fruits and vegetables provide various vitamins, carotenoids, flavonoids, fiber, and metal ions (potassium, magnesium, and calcium). Fish provides eicosapentaenoic and docosahexaenoic acids; olive oil is enriched in polyphenols (tyrosol, hydroxytyrosol, and oleuropein); red wine contains resveratrol; and garlic is enriched in sulfur compounds (alliin, allicin, S-allyl cysteine, and diallyl trisulfide). High levels of free radicals and neuroinflammation play an important role in cardiovascular diseases, type 2 diabetes, and neurological disorders. Mediterranean diet-derived metabolites are known to block free radical damage and retard neuroinflammation in above pathological conditions. Collectively, these studies indicate that the consumption of Mediterranean diet from the childhood to the old age not only leads to decrease in cardiovascular diseases, type 2 diabetes, and many types of cancers but also slows the onset of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuznait AH, Qosa H, Busnena BA et al (2013) Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci 4:973–982

    Article  CAS  Google Scholar 

  • Alcaín FJ, Villalba JM (2009) Sirtuin activators. Expert Opin Ther Pat 19(4):403–414. https://doi.org/10.1517/13543770902762893

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2016) What Is Dementia? Accessed on 15 Dec 2016. Available online: http://www.alz.org/what-is-dementia.asp

  • Alzheimer’s Australia Tests Used in Diagnosing Dementia (2016) Accessed on 15 Dec 2016. Available online: https://www.fightdementia.org.au/files/helpsheets/Helpsheet-DementiaQandA10-TestsUsedInDiagnosingDementia_english.pdf

  • Alzheimer’s Society Mediterranean Diet (2016) Accessed on 15 Dec 2016. Available online: https://www.alzheimers.org.uk/info/20010/risk_factors_and_prevention/149/mediterranean_diet

  • Amagase H, Petesch BL, Matsuura H et al (2001) Recent advances on the nutritional effects associated with the use of garlic as a supplement: intake of garlic and its bioactive components. J Nutr 131(Suppl 3):955–962

    Article  Google Scholar 

  • Aridi YS, Walker JL, Wright ORL (2017) The association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients 9:674

    Article  Google Scholar 

  • Arita M, Oh SF, Chonan T et al (2006) Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J Biol Chem 281:22847–22854

    Article  CAS  Google Scholar 

  • Arita M, Ohira T, Sun YP et al (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178:3912–3917

    Article  CAS  Google Scholar 

  • Atmani D, Chaher N, Atmani D et al (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237

    Article  CAS  Google Scholar 

  • Bäckman L, Nyberg L, Lindenberger U et al (2006) The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav Rev 30:791–807

    Article  Google Scholar 

  • Bäckman L, Lindenberger U, Li SC et al (2010) Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev 34:670–677. https://doi.org/10.1016/j.neubiorev.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  CAS  Google Scholar 

  • Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G (2013) Mediterranean diet, telomere maintenance and health status among elderly. PLoS One 8:e62781. https://doi.org/10.1371/journal.pone.0062781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodesheim U, Holzl J (1997) Isolation and receptor binding properties of alkaloids and lignans from Valeriana officialis L. Pharmazie 52:386–391

    CAS  PubMed  Google Scholar 

  • Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795. https://doi.org/10.1016/j.biochi.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jalil E, de Oliveira AC, Gräf S, Bhatia HS, Hüll M, Muñoz E, Fiebich BL (2007) Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 4:25

    Article  Google Scholar 

  • Capiralla H, Vingtdeux V, Zhao H et al (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120:461–472. https://doi.org/10.1111/j.1471-4159.2011.07594.x

    Article  CAS  PubMed  Google Scholar 

  • Carmargo LH, Alves FH, Biojones C et al (2013) Involvement of N-methyl-d-aspartate glutamate receptor and nitric oxide in cardiovascular responses to dynamic exercise in rats. Eur J Pharmacol 713:16–24

    Article  Google Scholar 

  • Carrero J, Stenvinkel P, Fellstrom B et al (2008) Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med 263:302–312

    Article  CAS  Google Scholar 

  • Chapman SB, Mudar RA (2014) Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations. Front Syst Neurosci 8:69. https://doi.org/10.3389/fnsys.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman SB, Aslan S, Spence JS et al (2013) Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci 5:75. https://doi.org/10.3389/fnagi.2013.00075

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman SB, Aslan S, Spence JS et al (2015) Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex 25:396–405. https://doi.org/10.1093/cercor/bht234

    Article  PubMed  Google Scholar 

  • Cipolla MJ (2009) Control of cerebral circulation. In the cerebral circulation. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Dai J, Jones DP, Goldberg J et al (2008) Association between adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 88:1364–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drapeau E, Abrous ND (2008) Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 7:569–589. https://doi.org/10.1111/j.1474-9726.2008.00369.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias MF, Sullivan LM, D’Agostino RB et al (2005) Homocysteine and cognitive performance in the Framingham offspring study: age is important. Am J Epidemiol 162:644–653

    Article  Google Scholar 

  • Epel ES, Lin J, Wilhelm FH et al (2006) Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology 31:277–287

    Article  CAS  Google Scholar 

  • Farooqui AA (2012) Phytochemical, signal transduction and neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Alzheimer disease, and depression. Springer, Cham

    Book  Google Scholar 

  • Farooqui AA (2014) Inflammation and oxidative stress in neurological disorders: effect of lifestyle, genes, and age. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Farooqui AA (2015) High calorie diet and the human brain. Springer, Cham

    Book  Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV et al (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445. https://doi.org/10.1016/j.mam.2010.09.006

    Article  CAS  Google Scholar 

  • Gaskins AJ, Rovner AJ, Mumford SL et al (2010) Adherence to a Mediterranean diet and plasma concentrations of lipid peroxidation in premenopausal women. Am J Clin Nutr 92:1461–1467. https://doi.org/10.3945/ajcn.110.000026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerligs L, Renken RJ, Saliasi E et al (2015) A brain-wide study of age-related changes in functional connectivity. Cereb Cortex 25:1987–1999. https://doi.org/10.1093/cercor/bhu012

    Article  PubMed  Google Scholar 

  • Giorgio A, Santelli L, Tomassini V et al (2010) Age-related changes in grey and white matter structure throughout adulthood. NeuroImage 51:943–951. https://doi.org/10.1016/j.neuroimage.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28:2278–2287

    Article  Google Scholar 

  • Gorelick PB (2010) Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Innate Inflamm Stroke 1207:155–162. https://doi.org/10.1111/j.1749-6632.2010.05726.x

    Article  Google Scholar 

  • Greenwood PM, Parasuraman R (2010) Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci 2:150. https://doi.org/10.3389/fnagi.2010.00150

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanhineva K, Torronen R, Bondia-Pons I et al (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010 11:1365–1402. https://doi.org/10.3390/ijms11041365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattiangady B, Rao MS, Shetty GA et al (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195:353–371

    Article  CAS  Google Scholar 

  • Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    Article  CAS  Google Scholar 

  • Ho S-C, Su M-S (2014) Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 19:17697–17714

    Article  Google Scholar 

  • Hong S, Gronert K, Devchand PR et al (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    Article  CAS  Google Scholar 

  • Hussein MA (2011) A convenient mechanism for the free radical scavenging activity of resveratrol. Int J Phytomed 3:459–469

    CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Lau FC (2007) Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann N Y Sci 1100:470–485

    Article  CAS  Google Scholar 

  • Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59:169–186

    PubMed  Google Scholar 

  • Kim YA, Kim GY, Park KY et al (2006) Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide activated C6 microglia. J Med Food 10:218–224

    Article  Google Scholar 

  • Kodali M, Parihar VK, Hattiangady B et al (2015) Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 5:8075. https://doi.org/10.1038/srep08075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    Article  CAS  Google Scholar 

  • Kumar A, Naidu PS, Seghal N et al (2007) Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 79:17–26

    Article  CAS  Google Scholar 

  • Lopez-Miranda J, Williams C, Lairon D (2007) Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 98(03):458–473

    Article  CAS  Google Scholar 

  • López-Miranda V, Soto-Montenegro ML, Vera G, Herradón E et al (2012) Resveratrol: a neuroprotective polyphenol in the Mediterranean diet. Rev Neurol 54:349–356

    PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  Google Scholar 

  • Lu H, Xu F, Rodrigue KM et al (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434. https://doi.org/10.1093/cercor/bhq224

    Article  PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783

    Article  CAS  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382

    Article  CAS  Google Scholar 

  • Marcheselli VL, Mukherjee PK, Arita M, Hong S et al (2010) Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fat Acids 82:27–34

    Article  CAS  Google Scholar 

  • Marder M, Paladini AC (2002) GABA (A)-receptor ligands of flavonoid structure. Curr Top Med Chem 2992 2:8L853–8L867

    Article  Google Scholar 

  • Marder M, Viola H, Wasowski C et al (2003) 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 75:537–545

    Article  CAS  Google Scholar 

  • Maruszak A, Pilarski A, Murphy T et al (2014) Hippocampal neurogenesis in Alzheimer’s disease: is there a role for dietary modulation? J Alzheimers Dis 38:11–38. https://doi.org/10.3233/JAD-131004

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T (2006) Telomere length predicts post-stroke mortality, dementia, and cognitive decline. Ann Neurol 60:174–180

    Article  Google Scholar 

  • Miller MG, Shukitt-Hale B (2012) Berry fruit enhances beneficial signalling in the brain. J Agric Food Chem 60:5709–5715

    Article  CAS  Google Scholar 

  • Mokni M, Elkahoui S, Limam F et al (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32:981–987

    Article  CAS  Google Scholar 

  • Morrison JH, Baxter MG (2012) The aging cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    Article  CAS  Google Scholar 

  • Mosconi L, Murray J, Tsui WH et al (2014) Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis 1(1):23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J et al (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996 726:49–56

    Article  CAS  Google Scholar 

  • Oliveras-López MJ, Molina JJ, Mir MV et al (2013) Extra virgin olive oil (EVOO) consumption and antioxidant status in healthy institutionalized elderly humans. Arch Gerontol Geriatr 57:234–242

    Article  Google Scholar 

  • Park DC, Payer D (2006) Working memory across the adult lifespan. In: Bialystok E, Craik F (eds) Lifespan cognition: mechanisms of change. Oxford UK, New York, pp 128–142

    Chapter  Google Scholar 

  • Paul L (2011) Diet, nutrition and telomere length. J Nutr Biochem 2011 22:895–901. https://doi.org/10.1016/j.jnutbio.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Bria P, Pomponi M (2008) Is Alzheimer’s disease a synaptic disorder? J Alzheimers Dis 13:39–47

    Article  CAS  Google Scholar 

  • Powolny AA, Singh SV (2008) Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett 269:305–314. https://doi.org/10.1016/j.canlet.2008.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbitt P, Osman P, Moore B, Stollery B (2001) There are stable individual differences in performance variability, both from moment to moment and from day to day. Q J Exp Psychol A 54(4):981–1003

    Article  CAS  Google Scholar 

  • Rafie N, Golpour Hamedani S, Barak F et al (2017) Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr 7:151–158. https://doi.org/10.1038/ejcn.2016.149

    Article  CAS  Google Scholar 

  • Rao MS, Hattiangady B, Abdel-Rahman A et al (2005) Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur J Neurosci 21:464–476

    Article  Google Scholar 

  • Rao MS, Hattiangady B, Shetty AK (2006) The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 5:545–558

    Article  CAS  Google Scholar 

  • Reagan LP (2007) Insulin signaling effects on memory and mood. Curr Opin Pharmacol 7:633–637

    Article  CAS  Google Scholar 

  • Rendeiro C, Vazour D, Rattray M et al (2013) Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain derived neurotrophic factor. PLoS One 2013 8:e63535. https://doi.org/10.1371/journal.pone.0063535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riviere C, Richard T, Quentin L et al (2007) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167

    Article  CAS  Google Scholar 

  • Sametsky EA et al (2010) Synaptic strength and postsynaptically silent synapses through advanced aging in rat hippocampal CA1 pyramidal neurons. Neurobiol Aging 31:813–825. https://doi.org/10.1016/j.neurobiolaging.2008.05.029

    Article  PubMed  Google Scholar 

  • Scarmeas N, Stern Y, Mayeux R et al (2006) Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol 63:1709–1717

    Article  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP et al (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880

    Article  CAS  Google Scholar 

  • Serhan CN (2008) Controlling the resolution of acute inflammation: a new genus of dual anti-inflammatory and proresolving mediators. J Periodontol 79(8 Suppl):1520–1528. https://doi.org/10.1902/jop.2008.080231

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    Article  CAS  Google Scholar 

  • Serhan CN, Yang R, Martinod K et al (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23. https://doi.org/10.1084/jem.20081880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  Google Scholar 

  • Singh B, Parsaik AK, Mielke MM et al (2014) Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 39:271–282

    Article  Google Scholar 

  • Sofi F, Cesari F, Abbate R et al (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344

    Article  Google Scholar 

  • Stroth S, Reinhardt RK, Thöne J et al (2010) Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults. Neurobiol Learn Mem 94:364–372

    Article  CAS  Google Scholar 

  • Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88(Pt B):93–100

    Article  CAS  Google Scholar 

  • Thambisetty M, Wan J, Carass A et al (2010) Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 52:1215–1223. https://doi.org/10.1016/j.neuroimage.2010.04.258

    Article  PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  Google Scholar 

  • van Praag H, Shubert T, Zhao C et al (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    Article  Google Scholar 

  • Wang J, Ho L, Zhao Z et al (2006a) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20:2313–2320

    Article  CAS  Google Scholar 

  • Wang JY, Wen LL, Huang YN et al (2006b) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12:3521–3533

    Article  CAS  Google Scholar 

  • Wang J, Ho L, Zhao W et al (2008) Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28:6388–6392. https://doi.org/10.1523/JNEUROSCI.0364-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Liong EC, Ling MT et al (2012) S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice. Eur J Nutr 51:323–333

    Article  CAS  Google Scholar 

  • Yaffe K, Lindquist K, Kluse M et al (2011) Telomere length and cognitive function in community-dwelling elders: findings from the health ABC study. Neurobiol Aging 32:2055–2060. https://doi.org/10.1016/j.neurobiolaging.2009.12.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahira Farooqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooqui, A.A., Farooqui, T. (2018). Antiaging and Neuroprotective Properties of Mediterranean Diet Components in Humans. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_15

Download citation

Publish with us

Policies and ethics