Skip to main content

Holomorphic Embeddings and Immersions of Stein Manifolds: A Survey

  • Conference paper
  • First Online:
Geometric Complex Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 246))

Abstract

In this paper we survey results on the existence of holomorphic embeddings and immersions of Stein manifolds into complex manifolds. Most of them pertain to proper maps into Stein manifolds. We include a new result saying that every continuous map \(X\rightarrow Y\) between Stein manifolds is homotopic to a proper holomorphic embedding provided that \(\dim Y>2\dim X\) and we allow a homotopic deformation of the Stein structure on X.

Dedicated to Kang-Tae Kim for his sixtieth birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhyankar, S.S., Moh, T.T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Acquistapace, F., Broglia, F., Tognoli, A.: A relative embedding theorem for Stein spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(4), 507–522 (1975)

    Google Scholar 

  3. Alarcón, A.: Complete complex hypersurfaces in the ball come in foliations. (2018)

    Google Scholar 

  4. Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F., López, F.J.: Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves. Proc. Lond. Math. Soc. (3) 111(4), 851–886 (2015). https://doi.org/10.1112/plms/pdv044

  5. Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F., López, F.J.: Minimal surfaces in minimally convex domains. Trans. Am. Math. Soc. (to appear). https://arxiv.org/abs/1702.08032

  6. Alarcón, A., Forstnerič, F.: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 357(3), 1049–1070 (2013). https://doi.org/10.1007/s00208-013-0931-4, http://dx.doi.org/10.1007/s00208-013-0931-4

  7. Alarcón, A., Forstnerič, F.: The Calabi-Yau problem, null curves, and Bryant surfaces. Math. Ann. 363(3–4), 913–951 (2015). https://doi.org/10.1007/s00208-015-1189-9, http://dx.doi.org/10.1007/s00208-015-1189-9

  8. Alarcón, A., Forstnerič, F.: Complete densely embedded complex lines in \(\mathbb{C}^2\). Proc. Am. Math. Soc. 146(3), 1059–1067 (2018). https://doi.org/10.1090/proc/13873

  9. Alarcón, A., Globevnik, J.: Complete embedded complex curves in the ball of \({\mathbb{C}}^2\) can have any topology. Anal. PDE 10(8), 1987–1999 (2017). https://doi.org/10.2140/apde.2017.10.1987

  10. Alarcón, A., Globevnik, J., López, F.J.: A construction of complete complex hypersurfaces in the ball with control on the topology. J. Reine Angew. Math. (to appear). https://www.degruyter.com/view/j/crll.ahead-of-print/crelle-2016-0061/crelle-2016-0061.xml

  11. Alarcón, A., López, F.J.: Minimal surfaces in \(R^3\) properly projecting into \(R^2\). J. Differ.Geom. 90(3), 351–381 (2012). http://projecteuclid.org/euclid.jdg/1335273387

  12. Alarcón, A., López, F.J.: Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into \({\mathbb{C}}^2\). J. Geom. Anal. 23(4), 1794–1805 (2013). https://doi.org/10.1007/s12220-012-9306-4, http://dx.doi.org/10.1007/s12220-012-9306-4

  13. Alarcón, A., López, F.J.: Complete bounded embedded complex curves in \(\mathbb{C}^2\). J. Eur. Math. Soc. (JEMS) 18(8), 1675–1705 (2016). https://doi.org/10.4171/JEMS/625, http://dx.doi.org/10.4171/JEMS/625

  14. Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of \({\mathbb{C}}^n\). Invent. Math. 110(2), 371–388 (1992). https://doi.org/10.1007/BF01231337. http://dx.doi.org/10.1007/BF01231337

  15. Andrist, R., Forstnerič, F., Ritter, T., Wold, E.F.: Proper holomorphic embeddings into Stein manifolds with the density property. J. Anal. Math. 130, 135–150 (2016). https://doi.org/10.1007/s11854-016-0031-y. http://dx.doi.org/10.1007/s11854-016-0031-y

  16. Andrist, R.B., Wold, E.F.: Riemann surfaces in Stein manifolds with the density property. Ann. Inst. Fourier (Grenoble) 64(2), 681–697 (2014). http://aif.cedram.org/item?id=AIF_2014__64_2_681_0

  17. Baader, S., Kutzschebauch, F., Wold, E.F.: Knotted holomorphic discs in \(\mathbb{C}^2\). J. Reine Angew. Math. 648, 69–73 (2010). https://doi.org/10.1515/CRELLE.2010.079, http://dx.doi.org/10.1515/CRELLE.2010.079

  18. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Space and their Mappings. Princeton Mathematical Series, vol. 47. Princeton University Press, Princeton, NJ (1999)

    Book  Google Scholar 

  19. Behnke, H., Stein, K.: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120, 430–461 (1949)

    Article  MathSciNet  Google Scholar 

  20. Berndtsson, B.: Integral formulas for the \(\partial \bar{\partial }\)-equation and zeros of bounded holomorphic functions in the unit ball. Math. Ann. 249(2), 163–176 (1980). https://doi.org/10.1007/BF01351413, http://dx.doi.org/10.1007/BF01351413

  21. Bishop, E.: Mappings of partially analytic spaces. Am. J. Math. 83, 209–242 (1961)

    Article  MathSciNet  Google Scholar 

  22. Boc Thaler, L., Forstnerič, F.: A long \({\mathbb{C}}^2\) without holomorphic functions. Anal. PDE 9(8), 2031–2050 (2016). https://doi.org/10.2140/apde.2016.9.2031, http://dx.doi.org/10.2140/apde.2016.9.2031

  23. Borell, S., Kutzschebauch, F.: Non-equivalent embeddings into complex Euclidean spaces. Int. J. Math. 17(9), 1033–1046 (2006). https://doi.org/10.1142/S0129167X06003795, http://dx.doi.org/10.1142/S0129167X06003795

  24. Borell, S., Kutzschebauch, F., Wold, E.F.: Proper holomorphic disks in the complement of varieties in \(\mathbb{C}^2\). Math. Res. Lett. 15(4), 821–826 (2008). https://doi.org/10.4310/MRL.2008.v15.n4.a18, http://dx.doi.org/10.4310/MRL.2008.v15.n4.a18

  25. Božin, V.: Note on harmonic maps. Internat. Math. Res. Not. 19, 1081–1085 (1999). https://doi.org/10.1155/S1073792899000586, http://dx.doi.org/10.1155/S1073792899000586

  26. Bracci, F., Gaussier, H.: A proof of the Muir-Suffridge conjecture for convex maps of the unit ball in \(C^n\). Math. Ann. (2017). https://link.springer.com/article/10.1007/s00208-017-1581-8

  27. Bracci, F., Gaussier, H.: Horosphere topology. Ann. Scuola Norm. Sup. di Pisa, Cl. Sci. (to appear). https://arxiv.org/abs/1605.04119

  28. Brody, R.: Compact manifolds and hyperbolicity. Trans. Am. Math. Soc. 235, 213–219 (1978)

    MathSciNet  MATH  Google Scholar 

  29. Buzzard, G.T., Fornæss, J.E.: An embedding of \(\mathbb{C}\) in \(\mathbb{C}^2\) with hyperbolic complement. Math. Ann. 306(3), 539–546 (1996). https://doi.org/10.1007/BF01445264, http://dx.doi.org/10.1007/BF01445264

  30. Carathéodory, C.: Über die Begrenzung einfach zusammenhängender Gebiete. Math. Ann. 73, 323–370 (1913). https://doi.org/10.1007/BF01456699

  31. Cartan, H., Thullen, P.: Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen. Regularitäts- und Konvergenzbereiche. Math. Ann. 106, 617–647 (1932). https://doi.org/10.1007/BF0145590

  32. Černe, M., Forstnerič, F.: Embedding some bordered Riemann surfaces in the affine plane. Math. Res. Lett. 9(5–6), 683–696 (2002). https://doi.org/10.4310/MRL.2002.v9.n5.a10, http://dx.doi.org/10.4310/MRL.2002.v9.n5.a10

  33. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds. American Mathematical Society Colloquium Publications, vol. 59. American Mathematical Society, Providence, RI (2012). https://doi.org/10.1090/coll/059, http://dx.doi.org/10.1090/coll/059

  34. Derksen, H., Kutzschebauch, F.: Nonlinearizable holomorphic group actions. Math. Ann. 311(1), 41–53 (1998). https://doi.org/10.1007/s002080050175, http://dx.doi.org/10.1007/s002080050175

  35. Derksen, H., Kutzschebauch, F., Winkelmann, J.: Subvarieties of \({\mathbb{C}}^n\) with non-extendable automorphisms. J. Reine Angew. Math. 508, 213–235 (1999). https://doi.org/10.1515/crll.1999.028, http://dx.doi.org/10.1515/crll.1999.028

  36. Dor, A.: Immersions and embeddings in domains of holomorphy. Trans. Am. Math. Soc. 347(8), 2813–2849 (1995). https://doi.org/10.2307/2154757, http://dx.doi.org/10.2307/2154757

  37. Drinovec Drnovšek, B.: Proper discs in Stein manifolds avoiding complete pluripolar sets. Math. Res. Lett. 11(5–6), 575–581 (2004). https://doi.org/10.4310/MRL.2004.v11.n5.a2, http://dx.doi.org/10.4310/MRL.2004.v11.n5.a2

  38. Drinovec Drnovšek, B.: Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls. J. Math. Anal. Appl. 431(2), 705–713 (2015). https://doi.org/10.1016/j.jmaa.2015.06.008, http://dx.doi.org/10.1016/j.jmaa.2015.06.008

  39. Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139(2), 203–253 (2007). https://doi.org/10.1215/S0012-7094-07-13921-8, http://dx.doi.org/10.1215/S0012-7094-07-13921-8

  40. Drinovec Drnovšek, B., Forstnerič, F.: Approximation of holomorphic mappings on strongly pseudoconvex domains. Forum Math. 20(5), 817–840 (2008). https://doi.org/10.1515/FORUM.2008.039, http://dx.doi.org/10.1515/FORUM.2008.039

  41. Drinovec Drnovšek, B., Forstnerič, F.: Strongly pseudoconvex domains as subvarieties of complex manifolds. Am. J. Math. 132(2), 331–360 (2010). https://doi.org/10.1353/ajm.0.0106, http://dx.doi.org/10.1353/ajm.0.0106

  42. Eliashberg, Y.: Topological characterization of Stein manifolds of dimension >2. Int. J. Math. 1(1), 29–46 (1990). https://doi.org/10.1142/S0129167X90000034, http://dx.doi.org/10.1142/S0129167X90000034

  43. Eliashberg, Y., Gromov, M.: Embeddings of Stein manifolds of dimension \(n\) into the affine space of dimension \(3n/2+1\). Ann. Math. (2) 136(1), 123–135 (1992). https://doi.org/10.2307/2946547, http://dx.doi.org/10.2307/2946547

  44. Fornaess, J.E.: Embedding strictly pseudoconvex domains in convex domains. Am. J. Math. 98(2), 529–569 (1976)

    Article  MathSciNet  Google Scholar 

  45. Forster, O.: Plongements des variétés de Stein. Comment. Math. Helv. 45, 170–184 (1970)

    Article  MathSciNet  Google Scholar 

  46. Forstnerič, F.: Proper holomorphic immersions into Stein manifolds with the density property. J. Anal. Math. (to appear). https://arxiv.org/abs/1703.08594

  47. Forstnerič, F.: Embedding strictly pseudoconvex domains into balls. Trans. Am. Math. Soc. 295(1), 347–368 (1986). https://doi.org/10.2307/2000160, http://dx.doi.org/10.2307/2000160

  48. Forstnerič, F.: Proper holomorphic mappings: a survey. In: Several Complex Variables (Stockholm, 1987/1988). Mathematical Notes, vol. 38, pp. 297–363. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

  49. Forstnerič, F.: Interpolation by holomorphic automorphisms and embeddings in \({\mathbb{C}}^n\). J. Geom. Anal. 9(1), 93–117 (1999). https://doi.org/10.1007/BF02923090, http://dx.doi.org/10.1007/BF02923090

  50. Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math. 191(2), 143–189 (2003). https://doi.org/10.1007/BF02392963, http://dx.doi.org/10.1007/BF02392963

  51. Forstnerič, F.: A properly embedded holomorphic disc in the ball with finite area and dense boundary curve (2017). https://arxiv.org/abs/1709.01028

  52. Forstnerič, F., Globevnik, J.: Proper holomorphic discs in \(\mathbb{C}^2\). Math. Res. Lett. 8(3), 257–274 (2001). https://doi.org/10.4310/MRL.2001.v8.n3.a3, http://dx.doi.org/10.4310/MRL.2001.v8.n3.a3

  53. Forstnerič, F., Globevnik, J., Rosay, J.P.: Nonstraightenable complex lines in \({\mathbb{C}}^2\). Ark. Mat. 34(1), 97–101 (1996). https://doi.org/10.1007/BF02559509, http://dx.doi.org/10.1007/BF02559509

  54. Forstnerič, F., Lárusson, F.: Survey of Oka theory. New York J. Math. 17A, 11–38 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Forstnerič, F., Ritter, T.: Oka properties of ball complements. Math. Z. 277(1–2), 325–338 (2014). https://doi.org/10.1007/s00209-013-1258-2, http://dx.doi.org/10.1007/s00209-013-1258-2

  56. Forstnerič, F., Rosay, J.P.: Approximation of biholomorphic mappings by automorphisms of \({\mathbb{C}}^n\). Invent. Math. 112(2), 323–349 (1993). https://doi.org/10.1007/BF01232438, http://dx.doi.org/10.1007/BF01232438 (Erratum: Invent. Math., 118(3):573–574, 1994)

  57. Forstnerič, F., Slapar, M.: Deformations of Stein structures and extensions of holomorphic mappings. Math. Res. Lett. 14(2), 343–357 (2007). https://doi.org/10.4310/MRL.2007.v14.n2.a15, http://dx.doi.org/10.4310/MRL.2007.v14.n2.a15

  58. Forstnerič, F., Slapar, M.: Stein structures and holomorphic mappings. Math. Z. 256(3), 615–646 (2007). https://doi.org/10.1007/s00209-006-0093-0, http://dx.doi.org/10.1007/s00209-006-0093-0

  59. Forstnerič, F., Smrekar, J., Sukhov, A.: On the Hodge conjecture for \(q\)-complete manifolds. Geom. Topol. 20(1), 353–388 (2016). https://doi.org/10.2140/gt.2016.20.353, http://dx.doi.org/10.2140/gt.2016.20.353

  60. Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \({C}^2\). J. Math. Pures Appl. (9) 91(1), 100–114 (2009). https://doi.org/10.1016/j.matpur.2008.09.010, http://dx.doi.org/10.1016/j.matpur.2008.09.010

  61. Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \({\mathbb{C}}^2\). Anal. PDE 6(2), 499–514 (2013). https://doi.org/10.2140/apde.2013.6.499, http://dx.doi.org/10.2140/apde.2013.6.499

  62. Forstnerič, F.: Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 56. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-61058-0

  63. Globevnik, J.: Boundary interpolation by proper holomorphic maps. Math. Z. 194(3), 365–373 (1987). https://doi.org/10.1007/BF01162243, http://dx.doi.org/10.1007/BF01162243

  64. Globevnik, J.: Discs in Stein manifolds. Indiana Univ. Math. J. 49(2), 553–574 (2000). https://doi.org/10.1512/iumj.2000.49.1740, http://dx.doi.org/10.1512/iumj.2000.49.1740

  65. Globevnik, J.: A complete complex hypersurface in the ball of \({C}^N\). Ann. Math. (2) 182(3), 1067–1091 (2015). https://doi.org/10.4007/annals.2015.182.3.4, http://dx.doi.org/10.4007/annals.2015.182.3.4

  66. Globevnik, J.: Embedding complete holomorphic discs through discrete sets. J. Math. Anal. Appl. 444(2), 827–838 (2016). https://doi.org/10.1016/j.jmaa.2016.06.053, http://dx.doi.org/10.1016/j.jmaa.2016.06.053

  67. Globevnik, J.: Holomorphic functions unbounded on curves of finite length. Math. Ann. 364(3–4), 1343–1359 (2016). https://doi.org/10.1007/s00208-015-1253-5, http://dx.doi.org/10.1007/s00208-015-1253-5

  68. Globevnik, J., Stensønes, B.: Holomorphic embeddings of planar domains into \({\mathbb{C}}^2\). Math. Ann. 303(4), 579–597 (1995). https://doi.org/10.1007/BF01461006, http://dx.doi.org/10.1007/BF01461006

  69. Globevnik, J., Stout, E.L.: The ends of varieties. Am. J. Math. 108(6), 1355–1410 (1986). https://doi.org/10.2307/2374529, http://dx.doi.org/10.2307/2374529

  70. Gompf, R.E.: Handlebody construction of Stein surfaces. Ann. Math. (2) 148(2), 619–693 (1998). https://doi.org/10.2307/121005, http://dx.doi.org/10.2307/121005

  71. Gompf, R.E.: Stein surfaces as open subsets of \({C}^2\). J. Symplectic Geom. 3(4), 565–587 (2005). http://projecteuclid.org/euclid.jsg/1154467630

  72. Gompf, R.E.: Minimal genera of open 4-manifolds. Geom. Topol. 21(1), 107–155 (2017). https://doi.org/10.2140/gt.2017.21.107, http://dx.doi.org/10.2140/gt.2017.21.107

  73. Grauert, H., Remmert, R.: Theory of Stein spaces, Grundlehren Math. Wiss., vol. 236. Springer, Berlin (1979) (Translated from the German by Alan Huckleberry)

    Google Scholar 

  74. Greene, R.E., Kim, K.T., Krantz, S.G.: The geometry of complex domains. In: Progress in Mathematics, vol. 291. Birkhäuser Boston, Inc., Boston, MA (2011). https://doi.org/10.1007/978-0-8176-4622-6, http://dx.doi.org/10.1007/978-0-8176-4622-6

  75. Griffiths, P., Harris, J.: Principles of algebraic geometry. In: Wiley Classics Library. John Wiley & Sons, Inc., New York (1994). https://doi.org/10.1002/9781118032527, http://dx.doi.org/10.1002/9781118032527 (Reprint of the 1978 original)

  76. Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2(4), 851–897 (1989). https://doi.org/10.2307/1990897, http://dx.doi.org/10.2307/1990897

  77. Gromov, M.L., Eliashberg, J.M.: Nonsingular mappings of Stein manifolds. Funkcional. Anal. i Priložen. 5(2), 82–83 (1971)

    MathSciNet  Google Scholar 

  78. Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. AMS Chelsea Publishing, Providence, RI (2009). https://doi.org/10.1090/chel/368, http://dx.doi.org/10.1090/chel/368 (Reprint of the 1965 original)

  79. Hamm, H.A.: Zum Homotopietyp Steinscher Räume. J. Reine Angew. Math. 338, 121–135 (1983). https://doi.org/10.1515/crll.1983.338.121, http://dx.doi.org/10.1515/crll.1983.338.121

  80. He, Z.X., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math. (2) 137(2), 369–406 (1993). https://doi.org/10.2307/2946541, http://dx.doi.org/10.2307/2946541

  81. He, Z.X., Schramm, O.: Koebe uniformization for “almost circle domains”. Am. J. Math. 117(3), 653–667 (1995). https://doi.org/10.2307/2375085, http://dx.doi.org/10.2307/2375085

  82. Ho, P.T., Jacobowitz, H., Landweber, P.: Optimality for totally real immersions and independent mappings of manifolds into \({C}^N\). New York J. Math. 18, 463–477 (2012). http://nyjm.albany.edu:8000/j/2012/18_463.html

  83. Hörmander, L.: An introduction to complex analysis in several variables. In: North-Holland Mathematical Library, vol. 7, 3th edn. North-Holland Publishing Co., Amsterdam (1990)

    Google Scholar 

  84. Jones, P.W.: A complete bounded complex submanifold of \({ C}^{3}\). Proc. Am. Math. Soc. 76(2), 305–306 (1979). https://doi.org/10.2307/2043009, http://dx.doi.org/10.2307/2043009

  85. Kaliman, S., Kutzschebauch, F.: Algebraic volume density property of affine algebraic manifolds. Invent. Math. 181(3), 605–647 (2010). https://doi.org/10.1007/s00222-010-0255-x, http://dx.doi.org/10.1007/s00222-010-0255-x

  86. Kaliman, S., Kutzschebauch, F.: On the density and the volume density property. In: Complex analysis and geometry. Springer Proceedings in Mathematics & Statistics, vol. 144, pp. 175–186. Springer, Tokyo (2015). http://dx.doi.org/10.1007/978-4-431-55744-9_12

  87. Kaliman, S., Zaĭdenberg, M.: A tranversality theorem for holomorphic mappings and stability of Eisenman-Kobayashi measures. Trans. Am. Math. Soc. 348(2), 661–672 (1996). https://doi.org/10.1090/S0002-9947-96-01482-1, http://dx.doi.org/10.1090/S0002-9947-96-01482-1

  88. Lárusson, F., Ritter, T.: Proper holomorphic immersions in homotopy classes of maps from finitely connected planar domains into \({\mathbb{C}}\times {\mathbb{C}}^*\). Indiana Univ. Math. J. 63(2), 367–383 (2014). https://doi.org/10.1512/iumj.2014.63.5206, http://dx.doi.org/10.1512/iumj.2014.63.5206

  89. Løw, E.: Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls. Math. Z. 190(3), 401–410 (1985). https://doi.org/10.1007/BF01215140, http://dx.doi.org/10.1007/BF01215140

  90. Majcen, I.: Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into \({\mathbb{C}}^2\). J. Geom. Anal. 19(3), 695–707 (2009). https://doi.org/10.1007/s12220-009-9076-9, http://dx.doi.org/10.1007/s12220-009-9076-9

  91. Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton, NJ (1963)

    MATH  Google Scholar 

  92. Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960)

    Article  MathSciNet  Google Scholar 

  93. Pinchuk, S., Shafikov, R., Sukhov, A.: Some Aspects of Holomorphic Mappings: A Survey. Tr. Mat. Inst. Steklova 298 (Kompleksnyĭ Analiz i ego Prilozheniya), 227–266 (2017). https://doi.org/10.1134/S0371968517030153, https://doi.org/10.1134/S0371968517030153

  94. Pommerenke, C.: Boundary behaviour of conformal maps, Grundlehren Math. Wiss., vol. 299. Springer, Berlin (1992). https://doi.org/10.1007/978-3-662-02770-7, http://dx.doi.org/10.1007/978-3-662-02770-7

  95. Prezelj, J., Slapar, M.: The generalized Oka-Grauert principle for 1-convex manifolds. Mich. Math. J. 60(3), 495–506 (2011). https://doi.org/10.1307/mmj/1320763045, http://dx.doi.org/10.1307/mmj/1320763045

  96. Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)

    MathSciNet  MATH  Google Scholar 

  97. Ritter, T.: A soft Oka principle for proper holomorphic embeddings of open Riemann surfaces into \((C^*)^2\). J. Reine Angew. Math. (to appear) https://www.degruyter.com/view/j/crll.ahead-of-print/crelle-2015-0116/crelle-2015-0116.xml

  98. Ritter, T.: A strong Oka principle for embeddings of some planar domains into \({\mathbb{C}}\times {\mathbb{C}}^\ast \). J. Geom. Anal. 23(2), 571–597 (2013). https://doi.org/10.1007/s12220-011-9254-4, http://dx.doi.org/10.1007/s12220-011-9254-4

  99. Rosay, J.P., Rudin, W.: Holomorphic maps from \({\mathbb{C}}^n\) to \({\mathbb{C}}^n\). Trans. Am. Math. Soc. 310(1), 47–86 (1988). https://doi.org/10.2307/2001110, http://dx.doi.org/10.2307/2001110

  100. Schoen, R., Yau, S.T.: Lectures on harmonic maps. In: Conference Proceedings and Lecture Notes in Geometry and Topology, II. International Press, Cambridge, MA (1997)

    Google Scholar 

  101. Schürmann, J.: Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann. 307(3), 381–399 (1997). https://doi.org/10.1007/s002080050040, http://dx.doi.org/10.1007/s002080050040

  102. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \({ C}^{2}\). J. Math. Soc. Jpn. 26, 241–257 (1974). https://doi.org/10.2969/jmsj/02620241, http://dx.doi.org/10.2969/jmsj/02620241

  103. Varolin, D.: The density property for complex manifolds and geometric structures. II. Int. J. Math. 11(6), 837–847 (2000). https://doi.org/10.1142/S0129167X00000404, http://dx.doi.org/10.1142/S0129167X00000404

  104. Varolin, D.: The density property for complex manifolds and geometric structures. J. Geom. Anal. 11(1), 135–160 (2001). https://doi.org/10.1007/BF02921959, http://dx.doi.org/10.1007/BF02921959

  105. Wold, E.F.: Embedding Riemann surfaces properly into \({\mathbb{C}}^2\). Int. J. Math. 17(8), 963–974 (2006). https://doi.org/10.1142/S0129167X06003746, http://dx.doi.org/10.1142/S0129167X06003746

  106. Wold, E.F.: Proper holomorphic embeddings of finitely and some infinitely connected subsets of \(\mathbb{C}\) into \({\mathbb{C}}^2\). Math. Z. 252(1), 1–9 (2006). https://doi.org/10.1007/s00209-005-0836-3, http://dx.doi.org/10.1007/s00209-005-0836-3

  107. Wold, E.F.: Embedding subsets of tori properly into \({C}^2\). Ann. Inst. Fourier (Grenoble) 57(5), 1537–1555 (2007). http://aif.cedram.org/item?id=AIF_2007__57_5_1537_0

  108. Wold, E.F.: A Fatou-Bieberbach domain in \({\mathbb{C}}^2\) which is not Runge. Math. Ann. 340(4), 775–780 (2008). https://doi.org/10.1007/s00208-007-0168-1, http://dx.doi.org/10.1007/s00208-007-0168-1

  109. Wold, E.F.: A long \({\mathbb{C}}^2\) which is not Stein. Ark. Mat. 48(1), 207–210 (2010). https://doi.org/10.1007/s11512-008-0084-y, http://dx.doi.org/10.1007/s11512-008-0084-y

Download references

Acknowledgements

The author is supported in part by the research program P1-0291 and grants J1-7256 and J1-9104 from ARRS, Republic of Slovenia. I wish to thank Antonio Alarcón and Rafael Andrist for a helpful discussion concerning Corollary 3.5 and the Schoen-Yau conjecture, Barbara Drinovec Drnovšek for her remarks on the exposition, Josip Globevnik for the reference to the paper of Božin [25], Frank Kutzschebauch for having proposed to include the material in Sect. 2.4, and Peter Landweber for his remarks which helped me to improve the language and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Forstnerič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Forstnerič, F. (2018). Holomorphic Embeddings and Immersions of Stein Manifolds: A Survey. In: Byun, J., Cho, H., Kim, S., Lee, KH., Park, JD. (eds) Geometric Complex Analysis. Springer Proceedings in Mathematics & Statistics, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-13-1672-2_11

Download citation

Publish with us

Policies and ethics