Skip to main content

Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earth™ Images and ArcGIS™, and Links with Large Igneous Provinces

  • Chapter
  • First Online:
Dyke Swarms of the World: A Modern Perspective

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

We present dyke swarm maps generated using Google Earth™ images, ArcGIS™, field data, and available geochronological ages of Neoarchean-Mesoproterozoic (ranging in age from ~2.80 to ~1.10 Ga) mafic dyke swarms and associated magmatic units of the different Archean cratons of the Indian shield which represent the plumbing system of Large Igneous Provinces (LIPs). The spatial and temporal distributions together with the trends of the dyke swarms provide important informations about geodynamics. Twenty four dyke swarms (17 have been precisely dated), mostly mafic in nature, have been mapped from the different cratons and named/re-named to best reflect their location, trend, distribution and distinction from other swarms. We have identified 14 distinct magmatic events during the Neoarchean-Mesoproterozoic in the Indian shield. These intraplate magmatic events (many of LIP scale) of the Indian shield and their matches with coeval LIPs on other crustal blocks suggest connections of the Indian shield within known supercontinents, such as Kenorland/Superia (~2.75–2.07 Ga), Columbia/Nuna (1.90–1.38 Ga), and Rodinia (1.20–0.72 Ga). However, further detailed U–Pb geochronology and associated paleomagnetism are required to come to any definite constraints on the position of the Indian cratons within these supercontinents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK, Gupta A, Orihashi Y (2010) New U-Pb zircon ages from Paleo-Mesoarchean TTG gneisses of the Singhbhum Craton, eastern India. Geochem J 44:81–88

    Article  Google Scholar 

  • Ahmad T, Mukherjee PK, Trivedi JR (1999) Geochemistry of Precambrian mafic magmatic rocks of the Western Himalaya, India: petrogenetic and tectonic implications. Chem Geol 160:103–119

    Article  Google Scholar 

  • Ahmad T, Deb M, Raza M (2008) Proterozoic mafic volcanism in the Aravalli-Delhi orogen, north-western India: geochemistry and tectonic framework. J Geol Soc India 72:93–111

    Google Scholar 

  • Ahmad I, Mondal MEA, Bhutani R, Satyanarayanan M (2017) Geochemical evolution of the Mangalwar Complex, Aravalli Craton, NW India: Insights from elemental and Nd-isotope geochemistry of the basement gneisses. Geosci Front. https://doi.org/10.1016/j.gsf.2017.07.003. (in press)

    Article  Google Scholar 

  • Amara M, Benmammar A, Ouadahi S, Ernst RE, Bendaoud A, Jessell M, Djemaï S, Hamoudi M (2016) Mapping the Dyke Swarms of the Eglab-Yetti Region, Southwestern Algeria. Acta Geol Sin (Engl Ed) 90(supp. 1):51

    Article  Google Scholar 

  • Amelin YV, Heaman LM, Verchogliad VM, Skobelev VM (1994) Geochronological constraints on the emplacement history of an anorthosite-rapakivi granite suite: U-Pb zircon and baddeleyite study of the Korosten complex, Ukraine. Contrib Mineral Petrol 116:411–419

    Article  Google Scholar 

  • Anand M, Gibson SA, Subbarao KV, Kelly SP, Dickin AP (2003) Early Proterozoic melt generation processes beneath the intracratonic Cuddapah Basin, southern India. J Petrol 44:2139–2171

    Article  Google Scholar 

  • Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic constructions followed by plutonism, regional deformation and sedimentation. Precambrian Res 115:63–95

    Article  Google Scholar 

  • Barnes S-J, Van Kranendonk MJ, Sonntag I (2012) Geochemistry and tectonic setting of basalts from the Eastern Goldfields Superterrane. Aust J Earth Sci 59:707–735

    Article  Google Scholar 

  • Basu AK (1986) Geology of parts of Bundelkhand and Granite Massif Central India. Geol Surv India Rec 117:61–124

    Google Scholar 

  • Basu AR, Sharma M, Premo WR (1993) U–Pb age of an older metamorphic group micaschist: earliest terrain of the eastern Indian craton. Recent Res Geol Geophys Precambrians. Recent Res Geol 16:93–102. (In: Saha AK (ed))

    Google Scholar 

  • Belica ME, Piispa EJ, Meert JG, Pesonen LJ, Plado J, Pandit MK, Kamenov GD, Celestino M (2014) Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88 Ga and rethinking the Columbia supercontinent. Precambrian Res 244:100–122

    Article  Google Scholar 

  • Bleeker W (2003) The Late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134

    Article  Google Scholar 

  • Bleeker W, Ernst RE (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke Swarms—time markers of crustal evolution: London. Francis, Taylor, pp 3–26

    Chapter  Google Scholar 

  • Bleeker W, Hall B (2007) The Slave craton: geology and metallogenic evolution. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods, vol 5. Geological Association of Canada, Mineral Deposits Division, Special Publication, pp 849–879

    Google Scholar 

  • Bogdanova SV, Gintov OB, Kurlovich D, Lubnina NV, Nilsson M, Orlyuk MI, Pashkevich IK, Shumlyanskyy LV, Starostenko VI (2013) Late Palaeoproterozoic mafic dyking in the Ukrainian Shield (Volgo-Sarmatia) caused by rotations during the assembly of supercontinent Columbia. Lithos 174:196–216

    Article  Google Scholar 

  • Bose MK (2008) Petrology and geochemistry of Proterozoic ‘Newer Dolerite’ and associated ultramafic dykes within Singhbhum granite pluton, eastern India. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dykes: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., New Delhi, pp 413–445

    Google Scholar 

  • Bose MK (2009) Precambrian mafic magmatism in the Singhbhum Craton, Eastern India. J Geol Soc India 73:13–35

    Article  Google Scholar 

  • Bose MK, Chakraborti MK, Saunders AD (1989) Geochemistry of the lavas from Proterozoic Dalma volcanic belt, Singhbhum, eastern India. Geol Rundchau 70:504–518

    Article  Google Scholar 

  • Bright RM, Amato JM, Denyszyn SW, Ernst RE (2014) U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: testing models for the origin of a post-Grenville Large Igneous Province. Lithosphere 6:135–156

    Article  Google Scholar 

  • Bryan SE, Ernst RE (2008) Revised definition of Large Igneous Provinces (LIPs). Earth Sci Rev 86:175–202

    Article  Google Scholar 

  • Bryan SE, Ferrari L (2013) Large Igneous Provinces and silicic large igneous provinces: progress in our understanding over the last 25 year. Geol Soc Am Bull 125:1053–1078

    Article  Google Scholar 

  • Buchan KL (2013) Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: a review. Precambrian Res 238:93–110

    Article  Google Scholar 

  • Buchan KL, Ernst RE (2004) Dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada Map 2022A (scale 1:5,000,000) and accompanying booklet

    Google Scholar 

  • Buchan KL, Ernst RE (2013) Diabase dyke swarms of Nunavut, Northwest Territories, and Yukon, Canada. Geological Survey of Canada, Open File 7464

    Google Scholar 

  • Buchan KL, Ernst RE (2018a) Giant circumferential dyke swarms: catalogue and characteristics. In: Srivastava RK, Ernst RE, Peng P (eds) Dyke Swarms of the world—a modern perspective. Springer (this volume)

    Google Scholar 

  • Buchan KL, Ernst RE (2018b) A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gond Res. https://doi.org/10.1016/j.gr.2018.02.006. (in press)

    Article  Google Scholar 

  • Buchan KL, Mortensen JK, Card KD, Percival JA (1998) Palaeomagnetism and U-Pb geochronology of diabase dyke swarms of Minto Block Superior Province, Quebec, Canada. Can J Earth Sci 35:1054–1069

    Article  Google Scholar 

  • Buchan KL, Ernst RE, Bleeker W, Davis WJ, Villeneuve M, van Breemen O, Hamilton M, Söderlund U (2010) Proterozoic magmatic events of the Slave Craton, Wopmay Orogen and Environs. Geological Survey of Canada Open File 5985

    Google Scholar 

  • Bullen DS, Hall RP, Hanson RE (2012) Geochemistry and petrogenesis of mafic sills in the 1.1 Ga Umkondo large igneous province, southern Africa. Lithos 142–143:116–129

    Article  Google Scholar 

  • Chakraborty PP, Pant NC, Paul PP (2016) Control on sedimentation in Indian Paleoproterozoic basins: clues from the Gwalior and Bijawar basins, central India. In: Mazumder R, Eriksson PG (eds) Precambrian Basins of India: stratigraphic and tectonic context, vol 43. Geological Society of London, Memoirs, pp 67–83

    Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009) A new find of boninite dyke from the Palaeoproterozoic Dongargarh Super group: Inference for a fossil subduction zone in the Archaean of the Bastar craton, central India: Neues Jahrbuch für Mineralogie—Abhandlungen, vol 186, pp 271–282

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999) Precise 40Ar/39Ar dating of Kotakonda kimberlite andChelima lamproite, India: implication to the timing of mafic dykes warm activity in the Eastern Dhawar craton. J Geol Soc India 53:425–432

    Google Scholar 

  • Chalapathi Rao NV, Wu FY, Mitchell RH, Li LQ, Lehmann B (2013) Mesoproterozoic U-Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonomagmaticevent. Chem Geol 353:48–64

    Article  Google Scholar 

  • Chalapathi Rao NV, Lehmann B, Panwar B, Kumar A, Mainkar D (2014) Petrogenesis of the crater-facies Tokapalkimberlite pipe, Bastar craton, Central India. Geosci Front 5:81–790

    Article  Google Scholar 

  • Chalapathi Rao NV, Atiullah, Burgess R, Nanda P, Choudhary AK, Sahoo S, Lehmann B, Chahong N (2016) Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the eastern-most margin of the Bastar Craton, India. Miner Pet 110:269–293

    Article  Google Scholar 

  • Chardon D, Jayananda M, Chetty TRK, Peucat J-J (2008) Precambrian continental strain and shear zone patterns: South Indian case. J Geophys Res 113:B08402. https://doi.org/10.1029/2007JB005299

    Article  Google Scholar 

  • Chatterjee N, Bhattacharji S (2001) Origin of the felsic dykes and basaltic dykes and flow in the Rajula-Palitana-Sihor area of the Deccan Traps, Saurashtra, India: a geochemical and geochronological study. Int Geol Rev 43:1094–1116

    Article  Google Scholar 

  • Chaudhuri AK, Saha D, Deb GK, Deb SP, Mukherjee MK, Ghosh G (2002) The Purana basins of southern cratonic province of India – a case for Mesoproterozoic fossil rifts. Gondwana Res 5:23–33

    Article  Google Scholar 

  • Chaudhuri T, Mazumder R, Arima M (2015) Petrography and geochemistry of Mesoarchaean komatiites from the eastern iron ore belt, Singhbhum craton, India, and its similarity with Barberton type komatiite. J Afr Earth Sci 101:135–147

    Article  Google Scholar 

  • Chetty TRK, Bhaskar Rao YJ (2006) The Cauvery shear zone, southern granulite terrain, India: a crustal-scale flower structure. Gondwana Res 10:77–85

    Article  Google Scholar 

  • Clark C, Collins AS, Timms NE, Kinny PD, Chetty TRK, Santosh M (2009) SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Res 16:27–36

    Article  Google Scholar 

  • Condie KC (1989) Plate tectonics and crustal evolution, 3rd edn. Pergamon Press, New York, p 488

    Google Scholar 

  • Crookshank H (1963) Geology of Southern Bastar and Jeypore from the Bailadila range to Eastern Ghats. Mem Geol Sur India 87:150

    Google Scholar 

  • Cruden A, Vollgger S, Dering G, Micklethwaite S (2016) High spatial resolution mapping of dykes using unmanned aerial vehicle (UAV) photogrammetry: new insights on emplacement processes. Acta Geol Sin (Engl Ed) 90(supp. 1):52–53

    Article  Google Scholar 

  • Das P, Das K, Chakraborty PP, Balakrishnan S (2011) 1420 Ma diabasic intrusives from the Mesoproterozoic Singhora Group, Chhattisgarh Supergroup, India: implications towards non-plume intrusive activity. J Earth Syst Sci 120:223–236

    Article  Google Scholar 

  • Dash JK, Pradhan SK, Bhutani R, Balakrishnan S, Chandrasekaran G, Basavaiah N (2013) Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: constraints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Res 228:164–176

    Article  Google Scholar 

  • Davies JHFL, Heaman LM (2014) New U-Pb baddeleyite and zircon ages for the Scourie dyke swarm: a ling-lived large igneous province with implications for the Paleoproterozoic evolution of NW Scotland. Precambrian Res 249:180–198

    Article  Google Scholar 

  • de Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambr Res 174:145–154

    Article  Google Scholar 

  • de Kock MO, Ernst RE, Söderlund U, Jourdan F, Hofmann A, Gall BL, Bertrand H, Chisonga BC, Beukes N, Rajesh HM, Moseki LM, Fuchs R (2014) Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: clues to a complex plumbing system. Precam Res 249:129–143

    Article  Google Scholar 

  • Demirer K (2012) U–Pb Baddeleyite Ages from Mafic Dyke Swarms in Dharwar Craton, India-Links to an Ancient Supercontinent. Dissertations in Geology at Lund University (Master’s thesis), 308 p

    Google Scholar 

  • Dering G, Micklethwaite S, Barnes SJ, Fiorentini M, Cruden A, Tohver E (2016) An elevated perspective: dyke-related fracture networks analysed with Uav photogrammetry. Acta Geol Sin (Engl Ed) 90(supp. 1):54–55

    Article  Google Scholar 

  • Devaraju TC (1995) Dyke Swarms of Peninsular India, vol 33. Geological Society of London, Memoirs, 451 p

    Google Scholar 

  • Devaraju TC, Alapieti TT, Sudhakara, Kaukonen R (2008) Calc-Alkaline Mafic Dykes Swarms of Volcanic Arc, Ocean Floor and N-MOR Basalt Affinity with Features of Destructive Plate Margin Emplacement in the Northern Segment of Western Dharwar Craton. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dyke: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., New Delhi, pp 215–237

    Google Scholar 

  • Dey S, Topno A, Liu Y, Zong K (2017) Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India. Precambrian Res 298:268–291

    Article  Google Scholar 

  • Divakara Rao V, Narayana BL, Rama Rao P, Murthy NN, Subba Rao MV, Rao JM, Reddy GLN (2000) Precambrian acid volcanism in central India—geochemistry and origin. Gondwana Res 3:215–226

    Article  Google Scholar 

  • Drury SA (1984) Proterozoic dyke swarms and thermal evolution in south India. J Geol Soc India 25:437–444

    Google Scholar 

  • Drury SA, Harris NB, Holt RW, Reeves-Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92:3–20

    Article  Google Scholar 

  • Dunn JD, Dey AK (1942) The geology and petrology of Eastern Singhbhum and surrounding areas. Mem Geol Surv 69:281–456

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, 653 p

    Google Scholar 

  • Ernst RE, Bell K (2010) Large Igneous Provinces (LIPs) and carbonatites. Miner Pet 98:55–76

    Article  Google Scholar 

  • Ernst RE, Bleeker W (2010) Large Igneous Provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739

    Article  Google Scholar 

  • Ernst RE, Buchan KL (2001a) The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352. Geological Society of America Special Paper, pp 247–265

    Chapter  Google Scholar 

  • Ernst RE, Buchan KL (2001b) Large mafic magmatic events through time and links to mantle-plume heads. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352. Geological Society of America Special Paper, pp 483–566

    Chapter  Google Scholar 

  • Ernst RE, Buchan KL (2016) Guidelines for preparing comprehensive regional mafic dyke swarm maps. Acta Geol Sin (Engl Ed) 90(supp. 1):20–21

    Article  Google Scholar 

  • Ernst RE, Jowitt SM (2013) Large Igneous Provinces (LIPs) and metallogeny. In: Colpron M, Bissig T, Rusk BG, Thompson JFH (eds) Tectonics, metallogeny, and discovery. The North American Cordillera and similar accretionary settings, vol 17. Society of Economic Geologists Special Publication, pp 17–51

    Google Scholar 

  • Ernst RE, Jowitt SM (2017) Multi-commodity, multi-scale exploration targeting using the Large Igneous Province record. Geological Survey of Western Australia Record 2017/6, pp 41–44

    Google Scholar 

  • Ernst RE, Srivastava RK (2008) India’s place in the Proterozoic world: constraints from the Large Igneous Province (LIP) record. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dyke: geochemistry, geophysics and geochronology. Narosa Publ. House Pvt. Ltd., New Delhi, pp 413–445

    Google Scholar 

  • Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclim Palaeoecol 478:30–52

    Article  Google Scholar 

  • Ernst RE, Head JW, Parfitt E, Grosfils EB, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58

    Article  Google Scholar 

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Geophysical Monogr Am Geophys Union 100:297–334

    Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL, Li Z (2008) Global record of 1600–700 MaLarge Igneous Province (LIPs): implications for the reconstruction of the pro-posed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res 160:159–178

    Article  Google Scholar 

  • Ernst RE, Srivastava RK, Bleeker W, Hamilton M (2010) Precambrian Large Igneous Provinces (LIPs) and their dyke swarms: new insights from high-precision geochronology integrated with paleomagnetism and geochemistry. Precambrian Res 183:vi–xi

    Article  Google Scholar 

  • Ernst RE, Bleeker W, Söderlund U, Kerr AC (2013) Large Igneous Provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174:1–14

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Botsyun S (2016) Map of mafic dyke swarms and related units of russia and adjacent regions. Acta Geol Sin (Engl Ed) 90(supp. 1):22–23

    Article  Google Scholar 

  • Evans DAD (2013) Reconstructing pre-Pangean supercontinents. Geol Soc Am Bull 125:1735–1751

    Article  Google Scholar 

  • Fermor LL (1936) An attempt at the correlation of the ancient schistose formations of Peninsular India, vol 70, pt 2, no 1. Memoirs of the Geological Survey of India

    Google Scholar 

  • French JE, Heaman LM (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Res 183:416–441

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Rivard B (2004) Global mafic magmatism and continental breakup at 2.2 Ga: evidence from the Dharwar craton, India. Geol Soc Am Abstr Program 36(5):340

    Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160:308–322

    Article  Google Scholar 

  • Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23(3):TC3006. https://doi.org/10.1029/2002TC001444

    Article  Google Scholar 

  • Gopalan K, Macdaugall JD, Roy AB, Murali AV (1990) Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Res 48:287–297

    Article  Google Scholar 

  • Goswami JN, Misra S, Wiedenbeck M, Ray SL, Saha AK (1995) 3.55 Ga old zircon from Singhbhum-Orissa iron ore craton, Eastern India. Curr Sci 69:1008–1011

    Google Scholar 

  • Gower CF, Rivers T, Krogh TE (2002) A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Can J Earth Sci 39:795–829

    Article  Google Scholar 

  • Gregory LC, Meert JG, Tamrat E, Malone S, Pandit MK, Pradhan V (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the Upper Vindhyan supergroup. Precambrian Res 149:69–75

    Article  Google Scholar 

  • Gumsley AP, Chamberlain KR, Bleeker W, Söderlund U, de Kock MO, Larsson ER, Bekker A (2017) Timing and tempo of the Great Oxidation Event. Proc Natl Acad Sci USA 114:1811–1816

    Article  Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqbaluddin, Prasad B, Sahai TN, Sharma SB (1980) Lithostratigraphic map of Aravalli region. Geological Survey of India (Hyderabad)

    Google Scholar 

  • Halls HC (1982) The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci Can 9:145–154

    Google Scholar 

  • Halls HC, Li J-H, Davis D, Hou G-T, Zhang B-X, Qian X-L (2000) A precisely dated Proterozoic paleomagnetic pole from the North China Craton, and its relevance to paleocontinental construction. Geophys J Int 143:185–203

    Article  Google Scholar 

  • Halls HC, Campal N, Davis DW, Bossi J (2001) Magnetic studies and U-Pb geochronology of the Uruguayan dyke swarm, Rio de la Plata craton, Uruguay: paleomagnetic and economic implications. J S Amn Earth Sci 14:349–361

    Article  Google Scholar 

  • Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U-Pb geochronology of eastern trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Res 155:47–68

    Article  Google Scholar 

  • Hamilton MA, Sadowski GR, Teixeira W, Ernst RE, Ruiz AS (2012) Precise, matching U–Pb ages for the Rincon del Tigre mafic layered intrusion and Huanchaca gabbro sill, Bolivia: evidence for a late Mesoproterozoic LIP in SW Amazonia? GAC MAC Joint Annual Meeting, St. John’s 2012 Geoscience at the Edge, vol 35

    Google Scholar 

  • Hamimi Z, Zoheir B, Hasan SM, Ernst RE (2016) Mapping the Dyke Swarms of the Eastern Desert, Egypt. Acta Geol Sin (Engl Ed) 90(supp. 1):28

    Article  Google Scholar 

  • Heaman LM, Easton RM, Hart TR, Hollings P, MacDonald CA, Smyk MC (2007) Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can J Earth Sci 44:1055–1086

    Article  Google Scholar 

  • Heron AM (1953) The geology of central Rajputana. Mem Geol Surv India 79:1–389

    Google Scholar 

  • Hughes HSR, McDonald I, Goodenough KM, Ciborowski TJR, Kerr AC, Davies JHFL, Selby D (2014) Enriched lithospheric mantle keel below the Scottish margin of the North Atlantic Craton: evidence from the Paleoproterozoic Scourie dyke swarm and mantle xenoliths. Precambrian Res 250:97–126

    Article  Google Scholar 

  • Huhma H, Hanski E, Kontinen A, Vuollo J, Mänttäri I, Lahaye Y (2018) Sm-Nd and U-Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland, vol 405. Geological Survey of Finland, Bulletin, 150 p

    Google Scholar 

  • Humbert F, Sonnette L, de Kock MO, Robion P, Horng CS, Cousture A, Wabo H (2017) Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophys J Int 209:842–865

    Article  Google Scholar 

  • Ivanic TJ, Wingate MTD, Kirkland CL, van Kranendonk MJ, Wyche S (2010) Age and significance of voluminous mafic—ultramafic magmatic events in the Murchison Domain, Yilgarn Craton. Aust J Earth Sci 57:597–614

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J, Capdevila R, Martin H (2006) 2.61 Ga potassic granites and crustal reworking, western Dharwar craton (India): tectonic, geochronologic and geochemical constraints. Precambrian Res 150:1–26

    Article  Google Scholar 

  • Jayananda M, Mahesha N, Srivastava RK, Mahabaleshwar B, Blais S (2008) Petrology and geochemistry of Paleoproterozoic high-magnesian norite and dolerite dyke swarms from the Halagur-Satnur areas, eastern Darwar craton, southern India. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dyke: geochemistry, geophysics and geochronology. Narosa Publ. House Pvt. Ltd., New Delhi, pp 239–260

    Google Scholar 

  • Jayananda M, Peucat J-J, Chardon D, Krishna Rao B, Corfu F (2013a) Neoarchean greenstone volcanism, Dharwar craton, Southern India: Constraints from SIMS zircon geochronology and Nd isotopes. Precambrian Res 227:55–76

    Article  Google Scholar 

  • Jayananda M, Tsutsumi Y, Miyazaki T, Gireesh RV, Kapfo K-U, Tushipokla, Hidaka H, Kano T (2013b) Geochronologic constraints on Meso and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. J Asian Earth Sci 78:18–38

    Article  Google Scholar 

  • Jessell MW, Santoul J, Baratoux L, Youbi N, Ernst RE, Metelka V, Miller J, Perrouty S (2015) An updated map of West African mafic dykes. J Afr Earth Sci 112:440–450

    Article  Google Scholar 

  • Kastek N, Ernst RE, Baragar WRA, Söderlund U, Kamo SL, Bleeker W, Sylvester P (2016) U-Pb Geochronology and geochemistry of the povungnituk group of the cape smith belt: a part of a craton-scale circa 2.0 Ga large igneous province (LIP), northern Superior craton. GAC-MAC Annual Meeting 2016 June 2, Whitehorse, Yukon

    Google Scholar 

  • Killian TM, Bleeker W, Chamberlain K, Evans DAD, Cousens B (2016) Palaeomagnetism, geochronology and geochemistry of the Palaeoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in supercraton Superia. In: Li ZX, Evans DAD, Murphy J (eds) Supercontinent cycles through earth history, vol 424. Geological Society London Special Publications, pp 15–45

    Google Scholar 

  • Kullerud K, Skjerlie KP, Corfu F, de la Rosa J (2006) The 2.40 Ringvassøy mafic dykes, West Troms Basement Complex, Norway: the concluding act of early Palaeoproterozoic continental breakup. Precambrian Res 150:183–200

    Article  Google Scholar 

  • Kumar A, Ahmad T (2007) Geochemistry of the mafic dykes in parts of Chotanagpur gneissic complex: petrogenetic and tectonic implications. Geochem J 41:173–186

    Article  Google Scholar 

  • Kumar A, Hamilton MA, Halls HC (2012a) A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochem Geophys Geosystem 7:Q02011. https://doi.org/10.1029/2011GC003926

    Article  Google Scholar 

  • Kumar A, Nagaraju E, Besse J, Bhaskar Rao YJ (2012b) New age, geochemical and paleomagnetic data on a 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precambrian Res 220–221:123–138

    Article  Google Scholar 

  • Kumar A, Nagaraju E, Srinivasa Sarma D, Davis DW (2014) Precise Pb baddeleyite geochronology by the thermal extraction-thermal ionization mass spectrometry method. Chem Geol 372:72–79

    Article  Google Scholar 

  • Kumar A, Parashuramulu V, Nagaraju E (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation. Precambrian Res 266:490–505

    Article  Google Scholar 

  • Kumar A, Parashuramulu V, Shankar R, Besse J (2017) Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India: implications to Vaalbara supercontinent. Precambrian Res 292:163–174

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsi-mons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  • Mahadevan TM (2002) Geology of Bihar and Jharkhand. GSI Publications, 2(1)

    Google Scholar 

  • Mahadevan TM (2008) Precambrian geological and structural features of the Indian Peninsula. J Geol Soc India 72:35–55

    Google Scholar 

  • Mallik AK, Sarkar A (1994) Geochronology and geochemistry of mafic dykes from the Precambrians of Keonjhar, Orissa. Indian Miner 48:13–24

    Google Scholar 

  • Mandal N, Mitra AK, Misra S, Chakraborty C (2006) Is the outcrop topology of dolerite dykes of the Precambrian Singhbhum Craton fractal? J Earth Syst Sci 115:643–660

    Article  Google Scholar 

  • Manyeruke TD, Blenkinsop TG, Buchholz P, Love D, Oberthür T, Vetter UK, Davis DW (2004) The age and petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: first evidence for early Paleoproterozoic magmatism in Zimbabwe. J Afr Earth Sci 40:281–292

    Article  Google Scholar 

  • Martin D McB, Morris PA (2010) Tectonic setting and regional implications of ca. 2.2 Ga mafic magmatism in the southern Hamersley Province, Western Australia. Aust J Earth Sci 57:911–931

    Article  Google Scholar 

  • Mealin CA (2006) Geological investigations in the Bird River Sill, southeastern Manitoba (part of NTS 52L5): geology and preliminary geochemical results. Report of Activities 2006, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, pp 214–225

    Google Scholar 

  • Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res 21:987–993

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks JC, Sirianni R, Stroud M, Newstead B, Gifford J (2010) The Precambrian tectonic evolution of India: a 3.0 billion year odyssey. J Asian Earth Sci 39:483–515

    Article  Google Scholar 

  • Miller JD, Nicholson SW (2013) Geology and mineral deposits of the Mid-continent rift—an overview. In: Miller JD (ed) Field guide to the Cu-Ni-PGE deposits of the Lake Superior Region, Precambrian Research Center Guidebook Series 13–1. University of Minnesota Press, Duluth

    Google Scholar 

  • Miller C, Klotzli U, Fran W, Thoni M, Grasemann B (2000) Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambrian Res 103:191–206

    Article  Google Scholar 

  • Misra S (2006) Geochronological constraints on evolution of Singhbhum mobile belt and associated basic volcanics of eastern Indian Shield. Gondwana Res 9:543–544

    Article  Google Scholar 

  • Misra S, Johnson PT (2005) Geochronological constraints on evolution of Singhb-hum mobile belt and associated basic volcanics of eastern Indian shield. Gondwana Res 8:129–142

    Article  Google Scholar 

  • Misra S, Deomurari MP, Wiedenbeck M, Goswami JN, Ray S, Saha AK (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res 93:139–151

    Article  Google Scholar 

  • Mondal MEA, Zainuddin SM (1996) Evolution of Archean-Palaeoproterozoic Bundelkhand massif, Central India—evidence from granitoid geochemistry. Terra Nova 8:532–539

    Article  Google Scholar 

  • Mondal MEA, Goswami JN, Deomurari MP, Sharma KK (2002) Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand Massif, northern India: implications for crustal evolution of the Bundelkhand-Aravalli supercontinent. Precambrian Res 117:85–100

    Article  Google Scholar 

  • Mondal MEA, Chandra R, Ahmad T (2008a) Precambrian mafic magmatism in Bundelkhand craton. J Geol Soc India 72:113–122

    Google Scholar 

  • Mondal MEA, Raza M, Ahmad T (2008b) Geochemistry of the mafic dykes of the Aravalli-Bundelkhand proto-continent: implications for sub-continental lithosphere evolution of north Indian shield. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dyke: geochemistry, geophysics and geochronology. Narosa Publ. House Pvt. Ltd., New Delhi, pp 527–545

    Google Scholar 

  • Moorbath S, Taylor PN (1988) Early Precambrian crustal evolution in eastern India: the ages of the Singhbhum Granite and included remnants of older gneiss. J Geol Soc India 31:82–84

    Google Scholar 

  • Müller SG, Krapež B, Barley ME, Fletcher IR (2005) Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 33:577–580

    Article  Google Scholar 

  • Mungall JE, Harvey JD, Balch SJ, Azar B, Atkinson J, Hamilton MA (2010) Eagle’s Nest: a magmatic Ni-Cu-PGE deposit in the James Bay Lowlands, Ontario, Canada. Soc Econ Geol Spec Publ 15:539–557

    Google Scholar 

  • Murthy NGK (1987) Mafic dyke swarms of the Indian shield. In: Halls HC, Fahriig WF (eds) Mafic Dyke Swarms, vol 34. Geological Association of Canada Special Paper, pp 393–400

    Google Scholar 

  • Murthy NGK (1995) Proterozoic mafic dykes in southern peninsular India: a review: In: Dyke swarms of peninsular India, vol 33. Geological Society of India, Memoirs, pp 81–98

    Google Scholar 

  • Nagaraju E, Parashuramulu V, Kumar A, Srinivas Sarma D (2018) Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India. Phys Earth Planet Inter 274:222–231

    Article  Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29

    Article  Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford Monographs on Geology and Geophysics No 6. Oxford University Press, New York, 233 p

    Google Scholar 

  • Naqvi SM, Divakara Rao V, Satyanarayana K, Hussain SM (1972) Petrochemistry of dolerite dykes from Shimoga and Chitaldrug schist belts, Mysore. Geophys Res Bull (NGRI) 10:109–123

    Google Scholar 

  • Naqvi SM, Divakara Rao V, Narain Hari (1974) Archean protocontinental growth of the Indian Shield and antiquity of its rift valleys. Precambrian Res 1:345–398

    Article  Google Scholar 

  • Nelson DR, Bhattacharya HR, Thern ER, Altermann W (2014) Geochemical and ion-microprobe U-Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. Precambrian Res 255:412–432

    Article  Google Scholar 

  • Nilsson MKM, Klausen MB, Söderlund U, Ernst RE (2013) Precise U-Pb ages and geochemistry of Paleoproterozoic mafic dykes from southern West Greenland: Linking the North Atlantic and the Dharwar Cratons. Lithos 174:255–270

    Article  Google Scholar 

  • Ni N, Chen N, Ernst RE, Yang S, Chen J (2018) Semi-automatic extraction and mapping of dyke swarms based on multi-resolution remote sensing images: Applied to the dykes in the Kuluketage region in the northeastern Tarim Block. Precambrian Res

    Google Scholar 

  • Norcross C, Davis DW, Spooner ET, Rust A (2000) U-Pb and Pb–Pb age constraints on Paleoproterozoic magmatism, deformation and gold mineralization in the Omai area, Guyana Shield. Precambrian Res 102:69–86

    Article  Google Scholar 

  • Page RW, Jackson MJ, Krassay AA (2000) Constraining sequence stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Aust J Earth Sci 47:431–461

    Article  Google Scholar 

  • Pandey BK, Gupta JN, Sarma KJ, Sastry CA (1997) Sm-Nd, Pb-Pb and Rb-Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambrian Res 84:181–196

    Article  Google Scholar 

  • Pandey UK, Sastry DFVLN, Pandey BK, Roy M, Rawat TPS, Ranjan Rajeeva, Shrivastava VK (2012) Geochronological (Rb-Sr and Sm-Nd) studies on intrusive gabbros and dolerite dykes from parts of Northern and Central Indian cratons: implications for the age of onset of sedimentation in Bijawar and Chattisgarh basins and uranium mineralisation. J Geol Soc India 79:30–40

    Article  Google Scholar 

  • Pati JK, Patel SC, Pruseth KL, Malviya VP, Arima M, Raju S, Pati P, Prakash K (2007) Geochemistry of giant quartz veins from the Bundelkhand craton, Central India and its implications. J Earth Syst Sci 116:510–697

    Google Scholar 

  • Pati JK, Raju S, Malviya VP, Bhushan R, Prakash K, Patel SC (2008) Mafic dykes of Bundelkhand craton, Central India: field, petrological and geochemical characteristics. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dyke: geochemistry, geophysics and geochronology. Narosa Publ. House Pvt. Ltd., New Delhi, pp 547–569

    Google Scholar 

  • Peng P (2010) Reconstruction and interpretation of giant mafic dyke swarms: a case study of 1.78 Ga magmatism in the North China craton. In: Kusky TM, Zhai MG, Xiao W (eds) The evolving continents: understanding processes of continental growth, vol 338. Geological Society London Special Publications, pp 163–178

    Google Scholar 

  • Peng P (2015) Precambrian mafic dyke swarms in the North China craton and their geological implications. Sci China Earth Sci 58:649–675

    Article  Google Scholar 

  • Peng P (2016) 1:2,500,000 Map of Precambrian Dyke Swarms and Related Units in North China. Acta Geol Sin (Engl Ed) 90(supp. 1):16

    Article  Google Scholar 

  • Peng P, Zhai MG, Zhang HF, Guo JH (2005) Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dykes. Int Geol Rev 47:492–508

    Article  Google Scholar 

  • Peng P, Zhai MG, Guo JH (2006) 1.80–1.75 Ga mafic dyke swarms in the central North China Craton implications for a plumerelated break-up event. In: Hanski E, Mertanen S, Ramö T, Vuollo J (eds) Dyke swarms—time markers of crustal evolution. Taylor & Francis, London, pp 99–112

    Google Scholar 

  • Pichamuthu CS (1965) Regional metamorphism and charnockitization in Mysore State, India. Indian Miner 6:46–49

    Google Scholar 

  • Piispa EJ, Smirnov AV, Pesonen LJ, Lingdevaru M, Murthu KSA, Devraju TC (2011) An integrated study of Proterozoic dykes, Dharwar craton, southern India. In: Srivastava RK (ed) Dyke swarms: keys for geodynamic interpretation. Springer, Berlin, pp 33–45

    Chapter  Google Scholar 

  • Pirajno F, Hoatson DM (2012) A review of Australia’s large igneous provinces and associated mineral systems: implications for mantle dynamics through geological time. Ore Geol Rev 48:2–54

    Article  Google Scholar 

  • Pisarevsky SA, Biswal TK, Wang X-C, De Waele B, Ernst R, Söderlund U, Tait JA, Ratre K, Singh YK, Cleve M (2013) Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: implications for the Mesoproterozoic supercontinent. Lithos 174:125–143

    Article  Google Scholar 

  • Pisarevsky SA, Elming S-Å, Pesonen LJ, Li Z-X (2014) Mesoproterozoic paleogeography: supercontinent and beyond. Precambrian Res 244:207–225

    Article  Google Scholar 

  • Pisarevsky SA, De Waele B, Jones S, Söderlund U, Ernst RE (2015) Paleomagnetism and U-Pb age of the 2.4 Ga Erayinia mafic dykes in the south-western Yilgarn, Western Australia: paleogeographic and geodynamic implications. Precambrian Res 259:222–231

    Article  Google Scholar 

  • Pivarunas PF, Meert JG, Pandit MK, Sinha A (2018) Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: expanding the Dharwar craton southward. Tectonopys. https://doi.org/10.1016/j.tecto.2018.01.024. (in press)

  • Prabhakar N, Bhattacharya A (2013) Paleoarchean partial convective overturn in the Singhbhum Craton, Eastern India. Precambrian Res 231:106–121

    Article  Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal MEA (2012) Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Res 198–199:51–76

    Article  Google Scholar 

  • Prendergast MD (2004) The Bulawayan Supergroup: a late Archean passive margin-related large igneous province in the Zimbabwe craton. J Geol Soc 161:431–445

    Article  Google Scholar 

  • Radhakrishana T, Krishnendu NR, Balasubramonian G (2007) Mafic magmatism around Cuddapah Basin: age constraints, petrological characteristics and geochemical inference for a possible magma chamber on the South western margin of the basin. J Geol Soc India 70:194–206

    Google Scholar 

  • Radhakrishna T (2009) Precambrian mafic magmatism in South Indian granulite terrain. J Geol Soc India 73:131–142

    Article  Google Scholar 

  • Radhakrishna T, Joseph M (2012) Geochemistry and paleomagnetism of Late Cretaceous mafic dykes in Kerala, southwest coast of India in relation to large igneous provinces and mantle plumes in the Indian Ocean region. Bull Geol Soc Am 124:240–255

    Article  Google Scholar 

  • Radhakrishna T, Maluski H, Mitchell JG, Joseph M (1999) 40Ar/39Ar and K/Ar geochronology of the dykes from the south Indian. Tectonophy 304:109–129

    Article  Google Scholar 

  • Radhakrishna T, Balasubramonian G, Joseph M, Krishnendu NR (2004) Mantle processes and geodynamics: inferences from mafic dykes of south India. In: Ravindra Kumar GR, Subhash N (eds) Earth system science and natural resource management (Silver Jubilee Compendium). Centre for Earth Science Studies, Trivandrum, pp 3–25

    Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar craton, India. J Geol Soc 166:193–196

    Article  Google Scholar 

  • Ramachandra HM, Mishra VP, Deshmukh SS (1995) Mafic dykes in the Bastar Precambrian: study of the Bhanupratappur–Keskal mafic dyke swarm. In: Devaraju TC (ed) Mafic Dyke Swarms of Peninsular India, vol 33. Geological Society of India Memoirs, pp 183–207

    Google Scholar 

  • Ramakrishan M (2009) Precambrian mafic magmatism in the Western Dharwar Craton, southern India. J Geol Soc India 73:101–116

    Article  Google Scholar 

  • Ramakrishnan M (1988) Tectonic evolution of the Archean high grade terrain of south India. J Geol Soc India 31:118–119

    Google Scholar 

  • Ramakrishnan M (1990) Crustal development in Southern Bastar Central Indian craton. Geol Surv India Spec Publ 28:44–66

    Google Scholar 

  • Ramakrishnan M (1993) Tectonic evolution of granulite terrains of southern India. Geol Soc India Mem 25:35–44

    Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2010) Geology of India. Geological Society of India, Bangalore, 994 p

    Google Scholar 

  • Rao JM (2004) The wide-spread 2 Ga dyke activity in the Indian shield—evidences from Bundelkhand mafic dyke swarm, Central India and their tectonic implications. Gondwana Res 7:1219–1228

    Article  Google Scholar 

  • Rao JM, Bhattacharji S, Rao MN, Hermes OD (1995) 40Ar/39Ar ages and geochemical characteristics of dolerite dykes around the Proterozoic Cuddapah Basin, South India. In: Devaraju TC (ed) Dyke swarms of Peninsular India, vol 33. Geological Society of India, Memoirs, pp 307–328

    Google Scholar 

  • Ratre K, De Waele B, Biswal TK, Sinha S (2010) SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450–517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula. J Asian Earth Sci 39:565–577

    Article  Google Scholar 

  • Reis NJ, Teixeira W, Hamilton MA, Santos FB, Almeida ME, Filho MSD (2013) Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos 174:175–195

    Article  Google Scholar 

  • Rogers JJW (1986) Dharwar craton and the assembly of Peninsular India. J Geol 94:129–143

    Article  Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Rogers C, Söderlund U, Ernst RE, Cousens B (2018) The 1418 Ma Highland-Purcell event of western Laurentia: distinguished from the 1460–1470 Ma Moyie LIP. (Abstr) Resources for Future Generations (http://www.rfg2018.org/) conference, Vancouver, Canada, 16–21 June 2018

  • Roy AB, Bhattacharya HN (2012) Tectonic and stratigraphic reappraisal constrain-ing the growth and evolution of the Singhbhum Craton, eastern India. J Geol Soc India 80:455–469

    Article  Google Scholar 

  • Roy AB, Kataria P, Upadhyaya R, Sharma BL (1995) Dyke rocks in the Precambrian crust of the Aravalli Mountain, Rajasthan. In: Devaraju TC (ed) Dyke swarms of Peninsular India, vol 33. Geological Society of India, Memoirs, pp 169–182

    Google Scholar 

  • Roy A, Sarkar A, Jeyakumar S, Aggrawal SK, Ebihara M (2002) Sm–Nd age and mantle source characteristics of the Dhanjori volcanic rocks, Eastern India. Geochem J 36:503–518

    Article  Google Scholar 

  • Roy A, Sarkar A, Jeyakumar S, Aggarwal SK, Ebihara M, Satoh H (2004) Late Archaean mantle metasomatism below eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr-Nd-O isotope systematics of ultramafic dykes, vol 113. Proceedings of the Indian Academy of Science (Earth and Planetary Sciences), pp 649–665

    Google Scholar 

  • Saha AK (1994) Crustal evolution of Singhbhum-North Orissa, eastern India, vol 27. Geological Society of India, Memoirs, 341 p

    Google Scholar 

  • Saha AK, Sankaran AV, Bhattacharyya TK (1973) Geochemistry of the newer dolerite suite of intrusions within the Singhbum granite—a preliminary study. J Geol Soc India 14:229–346

    Google Scholar 

  • Sahu N, Gupta T, Patel SC, Khuntia DBK, Behra D, Pande K, Das SK (2013) Petrology of lamproites from the Nuapada lamproite field, Bastar craton, India. In: Pearson DG, Grutter HS, Harris JW, Kjarsgaard BA, O’Brien H, Chalapathi Rao NV, Sparks RSJ (eds) Proceedings of X International Kimberlite Conference on, Special Issue Journal of Geological Society of India, vol 1, 137–166

    Google Scholar 

  • Samal AK, Srivatava RK, Sinha LK (2015) ArcGIS studies and field relationships of Paleoproterozoic mafic dyke swarms from the south of Devarakonda area, Eastern Dharwar Craton, southern India: implications for their relative ages. J Earth Syst Sci 124:1075–1084

    Article  Google Scholar 

  • Samal AK, Srivastava RK (2016) Does geochronology of few dykes of a swarm are true representative of all dykes of the same magmatic event?: constraints from the geochemistry and Google™ Earth Image–ArcGIS™ studies of the Paleoproterozoic mafic dyke swarms of the eastern Dharwar craton, Southern India. Acta Geol Sinica 90:2–3

    Google Scholar 

  • Samom JD, Ahmad T, Choudhary AK (2017) Geochemical and Sm–Nd isotopic constraints on the petrogenesis and tectonic setting of the Proterozoicmafic magmatism of the GwaliorBasin, central India: the influence of Large Igneous Provinces on Proterozoic crustal evolution, vol 463. Geological Society, London, Special Publications. https://doi.org/10.1144/SP463.10

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res 16:321–341

    Article  Google Scholar 

  • Santosh M, Hari KR, He X-F, Han Y-S, Manu Prasanth MP (2018) Oldest lamproites from peninsular India track the onset of Paleoproterozoic plume-induced rifting and the birth of large igneous province. Gondwana Res 55:1–20

    Article  Google Scholar 

  • Sarkar A, Ghosh S, Singhai RK, Gupta SN (1997) Rb–Sr geochronology of the Dargawan sill: constraint on the age of the type Bijawar sequence of Central India. International Conference on Isotopes in Solar System, 11–14 Nov, vol 5, pp 100–101

    Google Scholar 

  • Shankar R, Vijayagopal B, Kumar A (2014) Precise Pb-Pb baddeleyite ages of 1765 Ma for a Singhbhum ‘newer dolerite’ dyke swarm. Curr Sci 106:1306–1310

    Google Scholar 

  • Sharma RS (2009) Cratons and fold belts of India. Springer, Heidelburg, p 304

    Google Scholar 

  • Sharma KK, Rahman A (2000) The early Archaean-Paleoproterozoic crustal growth of the Bundelkhand craton northern Indian shield. In: Deb M (ed) Crustal evolution and metallogeny in the northwestern Indian Shield. Narosa Publishing House, New Delhi, pp 51–72

    Google Scholar 

  • Sharma M, Basu AR, Ray SL (1994) Sm-Nd isotopic and geochemical study of the archean tonalite-amphibolite association from the eastern Indian craton. Contrib Miner Petrol 117(1):45–55

    Article  Google Scholar 

  • Shekhawat LS, Joshi DW, Pandit M (2000) Stratigraphic status of the conglomerate occurring north and northwest of Salumber in western Indian craton: implications on geology of Palaeoproterozoic Aravalli Supergroup. Gondwana Res 3:245–249

    Article  Google Scholar 

  • Shekhawat LS, Joshi DW, Pandit MK (2001) A relook into the status of granitoids and conglomerate in Salumber-Jaisamand area, southern Rajasthan: implications for the stratigraphy of the Palaeoproterozoic Aravalli Fold Belt. J Geol Soc India 58:53–63

    Google Scholar 

  • Shekhawat LS, Pandit MK, Joshi DW (2007) Geology and geochemistry of palaeoproterozoic low-grade metabasic volcanic rocks from Salumber area, Aravalli Supergroup, NW India. J Earth Syst Sci 116:511–524

    Article  Google Scholar 

  • Shellnutt JG, Hari KR, Liao AC, Denyszyn SW, Vishwakarma N (2018) A 1.88 Ga giant radiating mafic dyke swarm across Southern India and Western Australia. Precambrian Res. https://doi.org/10.1016/j.precamres.2018.01.021. (in press)

    Article  Google Scholar 

  • Shumlyanskyy L, Billström K, Hawkesworth C, Elming S-Å (2012) U-Pb age and Hf isotope compositions of zircons from the north-western region of the Ukrainian shield: mantle melting in response to post-collision extension. Terra Nova 24:373–379

    Article  Google Scholar 

  • Shumlyanskyy L, Mitrokhin O, Billström K, Ernst R, Vishnevska E, Tsymbal S, Cuney M, Soesoo A (2015) The ca. 1.8 Ga mantle plume related magmatism of the central part of the Ukrainian shield. GFF 138:86–101

    Article  Google Scholar 

  • Shumlyanskyy L, Ernst RE, Söderlund U, Billström K, Mitrokhin O, Tsymbal S (2016) New U-Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism. GFF 138:79–85

    Article  Google Scholar 

  • Singh VK, Slabunov A (2014) The Central Bundelkhand Archean greenstone complex, Bundelkhand craton, central India: geology, composition, and geochronology of supracrustal rocks. Int Geol Rev 57:1349–1364

    Article  Google Scholar 

  • Sinha DK, Jain SK, Naganath KP (2011) Tectonic significance and age of doleritic sill near Bandhalimal in the Singhora Protobasin of Chhattisgarh Basin, Central India. In: Srivastava RK (ed) Dyke Swarms: keys for geodynamic interpretation. Springer, Heidelberg, pp 167–187

    Chapter  Google Scholar 

  • Smirnov AV, Evans DAD, Ernst RE, Söderlund U, Li Z-X (2013) Trading partners: tectonic ancestry of Southern Africa and Western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Res 224:11–22

    Article  Google Scholar 

  • Söderlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson P-O (2010) Towards a complete magmatic barcode for the Zimbabwe craton: baddeleyite U-Pb dating of regional dolerite dyke swarms and sill provinces. Precambrian Res 183:388–398

    Article  Google Scholar 

  • Söderlund U, Bleeker W, Demirer K, Srivastava RK, Hamilton MA, Nilsson M, Pesonen L, Samal AK, Jayananda M, Ernst RE, Srinivas M (2018) Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India: implications for paleoreconstructions and support for a ~30° change in dyke trends from south to north. Precambrian Res (revised version submitted)

    Google Scholar 

  • Srivastava RK (2006a) Precambrian mafic dyke swarms from the Central Indian Bastar craton: temporal evolution of the subcontinental mantle. In: Hanski E, Mertanen S, Ramo T, Vuollo J (eds) Dyke swarms: time markers of crustal evolution. Taylor & Francis, London, pp 147–159

    Chapter  Google Scholar 

  • Srivastava RK (2006b) Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting, central India craton: evidence for boninite magmatism. Geochem J 40:15–31

    Article  Google Scholar 

  • Srivastava RK (2008) Global intracratonic boninite-norite magmatism during the Neoarchean Paleoproterozoic: evidence from the central Indian Bastar craton. Int Geol Rev 50:61–74

    Article  Google Scholar 

  • Srivastava RK (2011) Dyke swarms: keys for geodynamic interpretation. Springer, Heidelburg, 605 p

    Book  Google Scholar 

  • Srivastava RK, Ahmad T (2008) Precambrian Mafic Magmatism in the Indian Shield—Part I. J Geol Soc India 72:1–140

    Google Scholar 

  • Srivastava RK, Ahmad T (2009) Precambrian Mafic Magmatism in the Indian Shield—Part II. J Geol Soc India 73:1–152

    Google Scholar 

  • Srivastava RK, Ernst RE (2013) Global intracratonic boninite-norite magmatism during the Neoarchean-Paleoproterozoic—Revisited. Publication Large Igneous Provinces Commission: http://www.largeigneousprovinces.org, LIP of the Month, pp 1–13

  • Srivastava RK, Gautam GC (2008) Precambrian Mafic Dyke Swarms from the Southern Bastar Central India Craton: present and future perspectives. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dykes: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., New Delhi, pp 367–376

    Google Scholar 

  • Srivastava RK, Gautam GC (2009) Precambrian mafic magmatism in the Bastar craton, central India. J Geol Soc India 73:52–72

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2012) Early Precambrian mafic dyke swarms from the Central Archean Bastar craton, India: geochemistry, petrogenesis and tectonic implications. Geol J 47:144–160

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2015) Geochemistry and petrogenesis of Paleo-Mesoproterozoic mafic dyke swarms from northern Bastar craton, central India: geodynamic implications in reference to Columbia supercontinent. Gondwana Res 28:1061–1078

    Article  Google Scholar 

  • Srivastava RK, Samal AK (2018) Geochemical characterization, petrogenesis, and emplacement tectonics of Paleoproterozoic high-Ti and low-Ti mafic intrusive rocks from the western Arunachal Himalaya, northeastern India and their possible relation to the ~1.9 Ga LIP event of the Indian shield. Geol J 1–21. https://doi.org/10.1002/gj.3172

  • Srivastava RK, Singh RK (2003) Geochemistry of high-Mg mafic dikes from the Bastar craton: evidence of Late Archean boninite-like rocks in an intracratonic setting. Curr Sci 85:808–812

    Google Scholar 

  • Srivastava RK, Singh RK (2004) Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dykes from the central Indian craton: evidence for mantle metasomatism. J Asian Earth Sci 23:373–389

    Article  Google Scholar 

  • Srivastava RK, Hall RP, Verma R, Singh RK (1996) Contrasting Precambrian mafic dykes of the Bastar craton, central India: petrological and geochemical characteristics. J Geol Soc India 48:537–546

    Google Scholar 

  • Srivastava RK, Singh RK, Verma SP (2004) Neoarchaean mafic volcanic rocks from the southern Bastar greenstone belt, Central India: petrological and tectonic significance. Precambrian Res 131:305–322

    Article  Google Scholar 

  • Srivastava RK, Sivaji C, Chalapathi Rao NV (2008) Indian dyke: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., New Delhi, p 626

    Google Scholar 

  • Srivastava RK, Ellam RM, Gautam GC (2009a) Sr-Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, central India. Miner Pet 96:71–79

    Article  Google Scholar 

  • Srivastava RK, Chalapathi Rao NV, Sinha AK (2009b) Cretaceous alkalineintrusives with affinities to aillikites from the Jharia area: magmatic expression of metasomatically veined and thinned lithospheric mantle beneath the Singhbhum Craton, Eastern India. Lithos 112:407–418

    Article  Google Scholar 

  • Srivastava RK, Hamilton MA, Jayananda M (2011a) 2.21 Ga large igneous province in the Dharwar Craton, India. In: International symposium on Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny, Irkutsk, Russia, Extended Abstract, pp 263–266

    Google Scholar 

  • Srivastava RK, Heaman LM, French JE, Filho CFF (2011b) Evidence for a Paleoproterozoic event of metamorphism in the Bastar Craton, Central India: P–T–t constraints from mineral chemistry and U–Pb geochronology of mafic dykes. Episodes 34:13–24

    Google Scholar 

  • Srivastava RK, Sinha AK, Kumar S (2012) Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chotanagpur Gneissic Terrain, eastern India: implications for their emplacement in a plate margin tectonic environment. J Earth Syst Sci 121:509–523

    Article  Google Scholar 

  • Srivastava RK, Jayananda M, Gautam GC, Gireesh V, Samal AK (2014a) Geochemistry of an ENE–WSW to NE–SW trending ~2.37 Ga mafic dyke swarm of the Eastern Dharwar Craton, India: does it represent a single magmatic event? Chemie Erde – Geochem 74:251–265

    Article  Google Scholar 

  • Srivastava RK, Jayananda M, Gautam GC, Samal AK (2014b) ~2.21–2.22 Ga N-S to NNW–SSE trending Kunigal mafic dyke swarm from Eastern Dharwar Craton, India: implications for Paleoproterozoic large igneous provinces and supercraton Superia. Miner Pet 109:695–711

    Article  Google Scholar 

  • Srivastava RK, Kumar S, Sinha AK, Chalapathi Rao NV (2014c) Petrology and geochemistry of high-titanium and low-titanium mafic dykes from the Damodar valley, Chhotanagpur Gneissic Terrain, eastern India and their relation to Cretaceous mantle plume(s). J Asian Earth Sci 84:34–50

    Article  Google Scholar 

  • Srivastava RK, Samal AK, Gautam GC (2015) Geochemical characteristics and petrogenesis of distinct Paleoproterozoic mafic dyke swarms in space and time and associated large igneous provinces from the Eastern Dharwar Craton, India. Int Geol Rev 57:1462–1484

    Article  Google Scholar 

  • Srivastava RK, Söderlund U, Ernst RE, Mondal SK, Samal AK (2016a) Neoarchaean-Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex, Singhbhum Craton, Eastern India: implications for identification of Large Igneous Provinces and their possible continuation on other formerly adjacent crustal blocks. Acta Geol Sin (Engl Ed) 90(supp. 1):17–18

    Article  Google Scholar 

  • Srivastava RK, Pimentel MM, Gautam GC (2016b) Nd isotope and geochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite suite of rocks in the southern Bastar craton, central India: petrogenesis and tectonic significance. Int Geol Rev 58:1596–1615

    Article  Google Scholar 

  • Srivastava RK, Söderlund U, Ernst RE, Mondal SK, Samal AK (2018) Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Res. https://doi.org/10.1016/j.precamres.2018.08.001. (in press)

  • Stark JC, Wang X, Denyszyn SW, Li Z-X, Rasmussen B, Zi J-W, Sheppard S, Liu Y (2018) Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Res. https://doi.org/10.1016/j.precamres.2017.12.036. (in press)

  • Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377:301–308

    Article  Google Scholar 

  • Subba Rao DV, Sridhar DN, Balaram V, Nagaraju K, Rao TG, Keshavakrishna A, Singh UP (2008) Proterozoic mafic-ultramafic dyke swarms in the vicinity of Chhattisgarh Khariar-Singhora basins in northern Bastar craton, central India. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dykes: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., NewDelhi, pp 377–396

    Google Scholar 

  • Swami Nath J, Ramakrishnan M (1981) The early Precambrian supracrustals of southern Karnataka, vol 112. Geological Survey of India, Memoirs, 350 p

    Google Scholar 

  • Tait J, Straathof G, Söderlund U, Ernst RE, Key R, Jowitt SM, Lo K, Dahmada MEM, N’Diaye O (2013) The ahmeyim great dyke of Mauritania: a newly dated Archaean intrusion. Lithos 174:323–332

    Article  Google Scholar 

  • Teixeira W, D’Agrella-Filho MS, Hamilton MA, Ernst RE, Girardi VAV, Mazzucchelli M, Bettencourt JS (2013) U-Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos 174:157–174

    Article  Google Scholar 

  • Teixeira W, Ernst RE, Hamilton MA, Lima G, Ruiz A, Geraldes MC (2016) Widespread ca. 1.4 Ga intraplate magmatism and tectonics in a growing Amazonia. GFF 138:241–254

    Article  Google Scholar 

  • Teixeira W, Hamilton MA, Girardi VAV, Faleiros FM, Ernst RE (2018a) U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa areas): tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma. Precambrian Res. https://doi.org/10.1016/j.precamres.2018.02.008. (in press)

  • Teixeira W, Reis NJ, Bettencourt JS, Klein EF, Oliveira DC (2018b) Intraplate prpterozoic magmatism in the Amazonian craton reviewed: geochronology, crustal tectonics and global barcode matches. In: Srivastava RK, Ernst RE, Peng P (eds), Dyke Swarms of the World—a modern perspective, Springer (this volume)

    Google Scholar 

  • Thorne JP, Highet LM, Cooper M, Claoue Long JC, Hoatson DM, Jaireth S, Huston DL, Gallagher RG (2014) Australian Mafic-Ultramafic Magmatic Events GIS Dataset, 1:5,000,000 scale [Digital Dataset]. Geoscience Australia, Commonwealth of Australia, Canberra; www.ga.gov.au

  • Upadhyay D, Chattopadhyay S, Kooijman E, Mezger K, Berndt J (2014) Magmatic and metamorphic history of Paleoarcheantonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum craton, eastern India. Precambrian Res 252:180–190

    Article  Google Scholar 

  • Upadhyaya R, Sharma BL Jr, Sharma BL, Roy AB (1992) Remnants of greenstone sequence from the Archaean rocks of Rajasthan. Curr Sci 63:87–92

    Google Scholar 

  • Vuollo J, Huhma H (2005) Paleoproterozoic mafic dykes in NE Finland. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian Geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 195–236

    Chapter  Google Scholar 

  • Wall CJ, Scoates JS, Friedman RM, Meurer WP (2012) Age of the Stillwater Complex. Age of the Bushveld Complex. Abstract, 22nd V.M. Goldschmidt conference “Earth in Evolution”, 24–29 June, Montreal, Quebec, Canada

    Google Scholar 

  • Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF, Peng P (2004) Geochemical, 40Ar-39Ar geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic dykes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Res 135:55–77

    Article  Google Scholar 

  • Windley BF (1984) The evolving continents, 2nd edn. Wiley, New York, p 399

    Google Scholar 

  • Wingate MTD, Martin DM (2016) Updated digital map of mafic dyke swarms and large igneous provinces in Western Australia. Acta Geol Sin (Engl Ed) 90(supp. 1):13–14

    Article  Google Scholar 

  • Worsley TR, Nance RD, Moody JB (1982) Plate tectonic episodicity: a deterministic model for periodic “Pangeas”, vol 65. Eos, Transactions of the American Geophysical Union, p 1104

    Google Scholar 

  • Worsley TR, Nance RD, Moody JB (1984) Global tectonics and eustasy for the past 2 billion years. Mar Geol 58:373–400

    Article  Google Scholar 

  • Youbi N, Ernst RE, Söderlund U, Boumehdi MA, Bensalah MK, Aarab EM (2016) Morocco, North Africa: a Dyke Swarm Bonanza. Acta Geol Sin (Engl Ed) 90(supp. 1):15

    Article  Google Scholar 

  • Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a number of projects sanctioned to RKS and he is thankfully acknowledged the Department of Science and Technology, Government of India, New Delhi (Research Scheme number SR/S4/ES-590/2011), the Ministry of Earth Sciences, Government of India, New Delhi (Research Scheme number MoES/16/10/11-RDEAS), and the Council of Scientific and Industrial Research, New Delhi (Research Scheme number 24 (0348)/17/EMR-II) for financial supports. REE was partially supported from Russian Mega-Grant 14.Y26.31.0012. RKS and AKS are also thankful to the Head of the Department of Geology, Banaras Hindu University, for extending all necessary facilities developed with DST-PURSE grant (Scheme 5050) and UGC-CAS-II grant (Scheme 5055) during this work. The authors would like to thank Keneth L. Buchan and K. R. Hari, the reviewers of the MS, and the handling Editor Peng Peng for extremely constructive reviews which have improved the MS significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samal, A.K., Srivastava, R.K., Ernst, R.E., Söderlund, U. (2019). Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earth™ Images and ArcGIS™, and Links with Large Igneous Provinces. In: Srivastava, R., Ernst, R., Peng, P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1666-1_9

Download citation

Publish with us

Policies and ethics