Skip to main content

Spatial and Temporal Distribution Patterns of Mafic Dyke Swarms in Central Asia: Results from Remote-Sensing Interpretation and Regional Geology

  • Chapter
  • First Online:
Dyke Swarms of the World: A Modern Perspective

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1025 Accesses

Abstract

Mafic dykes in continents are a special type of intrusive rock formed by different tectonic events including earlier fracturing deformation in host rocks and successive magma intrusions originating at depth. Dyke swarms indicate regional crustal deformation related to continental formation and evolution, and play the role of messenger regarding magma activities from the deeper crust or even mantle. The large number of mafic dykes in Central Asia hold the keys to resolve some debated tectonic problems such as subduction-accretion-collision processes during the formation of Central Asia (the western part of the Central Asian Orogenic Belt). However, spatial-temporal distribution patterns of mafic dykes in this vast area have not been comprehensively described and discussed to date. This study carried out a fundamental work on the spatial-temporal distribution patterns of dykes in Central Asia, and is intended to provide basic preparation for more in-depth studies in the future. In Enhanced Thematic Mapper Plus (bands 7, 4, and 2) images, major mafic dykes (greater than 5 m wide) displayed as dark-colored linear objects against their host rocks, and can be distinguished and plotted one-by-one and further analyzed using Geographic Information System software. The results indicate that more than 99% of the mafic dykes were emplaced in the Eastern Tianshan and Beishan, Western Mongolian-Altai, Eastern Junggar, North and West bank of Balkhash, Western Junggar, and Chingis-Taerbahatai. Most dykes formed during the Late Paleozoic, and the occurrence of these dykes is a result of various regional fracturing processes along different tectonic boundaries as well as immense magmatic intrusions (related to subduction, post-collisional processes, or large igneous provinces/giant mantle plumes). Other much older dykes were emplaced in the marginal areas of cratons, such as the Neoproterozoic dykes that intruded into the metamorphosed basement of the Tarim Craton (Aksu blueschist complex) and dykes emplaced in the Kuruktag area, which record the break-off history of the cratons. This study provides a general framework of mafic dykes in Central Asia on a large scale, and more intensive studies of mafic dykes at medium to small scales in different areas need a combined application of different observation methods, which will provide a better understanding of the continental evolution of Central Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrajevitch A, Van der Voo R, Bazhenov ML et al (2008) The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455(1–4):61–76

    Article  Google Scholar 

  • Cai KD, Sun M, Yuan C et al (2010) Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Res 18:638–652

    Article  Google Scholar 

  • Campbell IH, Griffiths RW (1990) Im plication of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99:79–93

    Article  Google Scholar 

  • Chen B, Jahn BM (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. J Asian Earth Sci 23(5):691–703

    Article  Google Scholar 

  • Chen NH, Dong JJ, Li ZL et al (2013) Permian crustal extension of Beishan area in Xinjiang, NW China: estimation from the statistical thickness of exposed mafic dyke swarms. Acta Petrol Sinica 29(10):3540–3546

    Google Scholar 

  • Chen Y, Xu B, Zhang S et al (2004) First Mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambr Res 133(3):271–281

    Article  Google Scholar 

  • Feng QW, Li JY, Liu JF et al (2012a) Ages and geological significance of the dark dykes emplaced in the Karamay pluton and adjacent area, in Western Junggar, Xinjiang, NW China: Evidence form LA-ICP-MS zircon chronology and Ar-Ar Amphibole chronology. Acta Petrol Sinica 28(7):2158–2170

    Google Scholar 

  • Feng QW, Li JY, Liu JF et al (2012b) Ages of the Hongshan granite and intruding dioritic dyke swarms, in western Junggar, Xinjiang, NW China: Evidence from LA-ICP-MS zircon chronology. Acta Petrol Sinica 28(9):2935–2949

    Google Scholar 

  • Feng QW, Li JY, Zhang J et al (2012c) About 9 km sinistral stike-slip displacement of the East segment of Xindi fracture zone. Ecidences from satellite remote sensing images. Xinjiang Geology, Xinjiang, NW China, pp 210–213

    Google Scholar 

  • Feng QW, Zhou KF, Wang JL (2015) The Late Paleozoic geodynamic environment of Qiongheba arc, eastern Junggar: evidence from spatial and temporal distribution patterns of dark dykes in Hersai pluton. Chinese J Geol 54(4):1068–1082

    Google Scholar 

  • Gao J, Long LL, Qian Q et al (2006) South Tianshan: a Late Paleozoic or a Triassic orogeny? Acta Petrol Sinica 22(5):1049–1061

    Google Scholar 

  • Goldberg SA, Butler JR (1990) Late Proterozoic rift-related dykes of the southern and central Appalachians, eastern USA. In: Parker (ed) Mafic dykes and emplacement mechanisms, pp 131–144

    Google Scholar 

  • Han BF, He GQ, Wang SG (1999) Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin. Science China (Series D) 42(2):113–119

    Article  Google Scholar 

  • Han BF, Ji JQ, Song B et al (2006) Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrol Sinica 22(5):1077–1086

    Google Scholar 

  • Han BF, Guo ZJ, Zhang ZC et al (2010) Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geol Soc Am Bull 122:627–640

    Article  Google Scholar 

  • Hou GT, Zhang C, Qian XL et al (1998) The formation mechanism and tectonic stress field of the Mesoporoterozoic mafic dike swarms in the North China Craton. Geol Rev 44(3):309–314

    Google Scholar 

  • Hou GT, Li JH, Halls HC et al (2003) The flow structures and mechanics of Late Precambrian mafic dyke swarms in North China Craton. Acta Geol Sin 77(2):210–216

    Google Scholar 

  • Jahn BM, Griffin WL, Windley BF (2000) Continental growth in the Phanerozoic: evidence from Central Asia. Tectonophysics 328:vii–x

    Article  Google Scholar 

  • Jahn BM (2004) Phanerozoic continental growth in Central Asia. J Asian Earth Sci 23:599–603

    Article  Google Scholar 

  • Kamo SL, Gower CF (1994) U–Pb baddeleyite dating clarifies age of characteristic paleomagnitic remanence of Long Range dykes, southeastern Labrador. Atl Geol 30:259–262

    Article  Google Scholar 

  • Kamo SL, Krpgh TE, Kumarapeli PS (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implication for the time of lapetan rifting. Can J Earth Sci 32:273–280

    Article  Google Scholar 

  • LeCheminant AN, Heaman LM (1991) U–Pb ages for the 1.27 Ga Mackenzie igneous events, Canada: support for a plume initiation model (abstract). Program with anstracts, A73, Geological Association on Canada: Waterloo, p 16

    Google Scholar 

  • Li CY (1980) A preliminary study of plate tectonics of China. Bull Chin Acad Sci 2(1):11–22

    Google Scholar 

  • Li DD, Luo ZH, Huang JX et al (2009a) The chronological and geological implications of the Cenozoic basic magmatic activities in Piqiang Basin, Xinjiang China. Earth Sci Front 16(3):270–281

    Article  Google Scholar 

  • Li DD, Wang YW, Wang JB et al (2014) New evidence of the mafic-ultramafic pluton emplacement age in Weiya, Eastern Tianshan Xinjiang. Xinjiang Geol 32(1):1–5

    Google Scholar 

  • Li HB, Zhang ZC, Lv LS et al (2012) Petrological, geochemical and geometric characteristics of dyke swarms and their tectonic significance. Acta Petrol ET Mineral 31(1):91–103

    Google Scholar 

  • Li JH, He WY, Qian XL (1997) Genetic mechanism and tectonic setting of Proterozoic mafic dyke swarm: it implication for paleoplate reconstruction. Geol J China Univ 3(3):272–281

    Google Scholar 

  • Li JH, Hou GT, Qian XL et al (2001) Single-zircon U–Pb age of the initial Mesoproterozoic basic dike swarms in Hengshan mountain and its implication for the tectonic evolution of the North China Craton. Geol Rev 17(3):234–238

    Google Scholar 

  • Li JY (2004) Structural characteristics of crustal “mosaicking and superimposition” of the continent of China and its evolution. Geol Bull China 23:986–1004

    Google Scholar 

  • Li JY, He GQ, Xu X et al (2006a) Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation. Acta Geol Sin 80(1):148–468

    Article  Google Scholar 

  • Li JY, Song B, Wang KZ et al (2006b) Perimian mafic-ultramafic complexes on the southern margin of the Tu–Ha Basin, East Tianshan Mountains: Geological records of vertical crustal growth in Central Asia. Acta Geoscientica Sinica 27(5):424–446

    Google Scholar 

  • Li JY, Zhang J, Yang TN et al (2009b) Crustal tectonics division and evolution of the Southern part of the North Asian orogenic region and its adjacent areas. J Jilin Univ (Earth Sci Edition) 39(4):584–605

    Google Scholar 

  • Li JY, Liu JF, Zheng RG et al (2017a) The eruptive timing of Permian basalts in Keping area, The northwest margin of Tarim Basin, China: evidence from detrital zircons. J Earth Sci Environ 39(3):301–325

    Google Scholar 

  • Li M, Wang YW, Wang JB et al (2010) Zircon U–Pb chronologic evidence for magma mixing in the Weiya ore district, Xinjiang. Geol China 37(1)

    Google Scholar 

  • Li P, Sun M, Rosenbaum G et al (2017b) Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt. J Asian Earth Sci

    Google Scholar 

  • Li SL, Li WQ, Feng XC et al (2002a) Age of formation of Weiya composite stocks in Eastern Tianshan mountains. Xinjiang Geol 20(4):357–359

    Google Scholar 

  • Li XZ, Han BF, Ji JQ et al (2004) Geology, geochemistry and K–Ar ages Karamay basic-intermediate dyke swarm from Xinjiang, China. Geochimica 33(6):574–584

    Google Scholar 

  • Li XZ, Han BF, Li ZH et al (2005a) Mechanism of the Karamay basic-intermediate dyke swarm from Xinjiang and tectonic implications. Geol Rev 51(5):517

    Google Scholar 

  • Li YJ, Wang ZM, Wu HR et al (2002b) Discovery of radiolarian fossils from the Aiketik group at the Western end of the South Tianshan mountains of China and its implications. Acta Geol Sin 76:146–153

    Google Scholar 

  • Li YJ, Sun LD, Wu HR et al (2005b) Permo-Carboniferous radiolarians from the Wupata’erkan group, Western South Tianshan, Xinjiang, China. Acta Geol Sin 79:16–23

    Article  Google Scholar 

  • Liu J, Jin SY, Wang YJ (2014) The summarization of platinum group metals deposits in the Great Dyke, Zimbabwe. Precious Met 35(3):79–82

    Google Scholar 

  • Liu S, Feng CX, Feng GY et al (2017) Zircon U–Pb age, geochemical and Sr–Nd–Pb isotopic data: Constraints on the genetic model of the mafic dykes from the North China Craton. Acta Petrol Sinica 33(6):1667–1685

    Google Scholar 

  • Liu YL, Zhang ZC, Guo ZJ et al (1999) K–Ar isochron dating of Kuluktag mafic dykes, Xinjiang autonomous region, and discussion on some related questions. Geol J China Univ 5(1):54–58

    Google Scholar 

  • Lu SN, Jiang MM (2003) Mantle plumes and giant radiating dyke swarms. Geol Surv Res 26(3):136–144

    Google Scholar 

  • Luo ZH, Lu XX, Wang BZ et al (2008) Post-orogenic dike complexes and implications for metallogenesis. Earth Sci Front 15(4):1–12

    Article  Google Scholar 

  • Luo ZH, Chen BH, Jiang XM et al (2012) A preliminary attempt for targeting prospecting districts using the wide composition-spectrum dike swarms: an example of the South Alatao Mountains, Xinjiang, China. Acta Petrol Sinica 28(7):1949–1965

    Google Scholar 

  • Ma C, Xiao W, Windley BF et al (2012) Tracing a subducted ridge–transform system in a late Carboniferous accretionary prism of the southern Altaids: Orthogonal sanukitoid dyke swarms in Western Junggar, NW China. Lithos 140–141:152–165

    Article  Google Scholar 

  • Ma F, Mu ZG, Li JH (2000) Geochemistry and petrogenesis of Precambrian mafic dyke swarms. Geol-Geochem 28(4):58–64

    Google Scholar 

  • Mertanen S, Personen LJ, Huhma H (1996) Paleomagnetism and Sm–Nd ages of the Neoproterozoic diabase in Laanila and Kautokeino, northern Fennoscandia, in Precambrian crustal evolution in the North Atlantic region. Spec Publ 112:331–358

    Article  Google Scholar 

  • Moores EM (1982) Origin and emplacement of ophiolites. Rev Geophys Space Phys 20(4):735–760

    Article  Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Mukasa SB, Wilson AH, Carlson RW (1998) A multielement geochronologic study of the Great Dyke, Zimbabwe: significance of the robust and reset ages. Earth Planet Sci Lett 164(1–2):353–359

    Article  Google Scholar 

  • Oberthur T, Cabri LJ, Weisner TW et al (1997) Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe: a reconnaissance study. Can Mineral 35(35):597–609

    Google Scholar 

  • Peng P, Zhai MG, Zhang HF et al (2004) Geochemistry and geological significance of the 1.8 Ga mafic dyke swarms in the North China Craton: an example from the juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrol Sinica 20(3):439–456

    Google Scholar 

  • Peng P (2010) Reconstruction and interpretation of giant mafic dyke swarms: a case study of 1.78 Ga magmatism in the North China craton. Geol Soc, London, Spec Publ 338:163–178

    Article  Google Scholar 

  • Pirajno F, Mao J, Zhang Z et al (2008) The association of mafic–ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32(2–4):165–183

    Article  Google Scholar 

  • Qi JY (1993) Geology and genesis of vein rock group in Western Zhunggar, Xinjiang. Acta Petrol Sinica 9(3):288–299

    Google Scholar 

  • Qin KZ, Su BX, Sakyi PA et al (2011) SIMS zircon U–Pb geochronology and Sr–Nd isotopes of Ni–Cu–Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume. Am J Sci 311(3):237–260

    Article  Google Scholar 

  • Schoenberg R, Nägler TF, Gnos E et al (2003) The source of the great dyke, Zimbabwe, and Its tectonic significance: evidence from Re–Os isotopes. J Geol 111(5):565–578

    Article  Google Scholar 

  • Şengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Shao JA, Zhang LQ (2002) Mesozoic dyke swarms in the north of North China. Acta Petrol Sinica 18(3):312–318

    Google Scholar 

  • Shen QH, Geng YS (2012) The tempo-spatial distribution, geological characteristics and genesis of blueschist belts in China. Acta Geol Sin 86(9):1407–1446

    Google Scholar 

  • Shu LS, Guo ZJ, Zhu WB et al (2004) Post-collision tectonism and basin-range evolution in the Tianshan belt. Geol J China Univ 10(3):393–404

    Google Scholar 

  • Su BX, Qin KZ, Sakyi PA et al (2011) U–Pb ages and Hf–O isotopes of zircons from late Paleozoic mafic–ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an early-permian mantle plume. Gondwana Res 20(2–3):516–531

    Article  Google Scholar 

  • Sun B, Shan YH, Qiao YB (2010) Curved mafic dike swarm in a Late-Paleozoic granitoid in the Northern Mountain, Gansu, northwestern China: genesis and implications. Chinese J Geol 45(1):80–91

    Google Scholar 

  • Tang GJ, Wang Q, Wyman DA et al (2012) Late carboniferous high εNd(t)–εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos 140(141):86–102

    Article  Google Scholar 

  • Van der Voo R, Abrajevitch S, Bazhenov ML et al. (2007) Late Paleozoic History of the Kazakhstan orocline. American Geophysical Union

    Google Scholar 

  • Wang L, Wang GH, Lei SB et al (2017) The Early Carboniferous Xiaomiaogou granite porphyry dykes in the northern margin of the North China Craton: implication for craton-mantle interaction and intraplate magmatism. Geol J 52:489–509

    Article  Google Scholar 

  • Wang LM, Chao WD, Li YJ et al (2015) Zircon LA–ICP–MS U–Pb dating and tectonic settings implication of the early permian intermediate to Mafic Dyke swarms in Urho Area, West Junggar. Xinjiang Geol 33(3):297–304

    Google Scholar 

  • Wang YW, Wang JB, Wang LJ et al (2008) Zorcon U–Pb age, Sr–Nd isotope geochemistry and geological siginificances of the weiya mafic-ultramafic complex, xinjiang. Acta Petrol Sinica 24(4):781–792

    Google Scholar 

  • Wilhem C, Windley BF, Stampfli GM (2012) The Altaids of central Asia: a tectonic and evolutionary innovative review. Earth Sci Rev 113:303–341

    Article  Google Scholar 

  • Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol 23(2):240–292

    Article  Google Scholar 

  • Wilson AH (1996) The Great Dyke of Zimbabwe. Dev Petrol 15(96):365–402

    Google Scholar 

  • Windley BF, Alexeiev D, Xiao WJ et al (2007) Tectonic models accretion of the central Asian Orogenic Belt. J Geol Soc 164:31–47

    Article  Google Scholar 

  • Xia LQ, Xia ZC, Xu XY et al (2004) Carboniferous Tianshan igneous megaprovince and mantle plume. Geol Bull China 23(9–10):903–910

    Google Scholar 

  • Xia LQ, Li XM, Xia ZC et al (2006) Carboniferous-Permian rift-related volcanism and mantle plume in the Tianshan, Northwestern China. Northwest Geol 39(1):1–49

    Google Scholar 

  • Xia LQ, Xia ZC, Xu XY et al (2008) Petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Tianshan and its neighboring areas, Northwestern China. Northwest Geol 41(4):1–68

    Google Scholar 

  • Xiao PX, Huang YH, Wang YX et al (2006a) Geochemical characteristics and isotope dating of moyite at the southeastern margin of the Kuruktag block, Xinjiang, China. Geol Bull China 25(6):725–729

    Google Scholar 

  • Xiao W, Kröner A, Windley B (2009) Geodynamical evolution of central Asia in the Paleozoic and Mesozoic. Int J Earth Sci 98(6):1185–1188

    Article  Google Scholar 

  • Xiao WJ, Han CM, Yuan C et al (2006b) Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): constraints for the tectonics of the Southern Paleoasian Domain. Acta Petrol Sinica 22(5):1062–1076

    Google Scholar 

  • Xiao WJ, Shu LS, Gao J et al (2008) Continental dynamics of the central Asian Orogenic Belt and its metallogeny. Xinjiang Geol 26(1):4–8

    Google Scholar 

  • Xiao WJ, Huang BC, Han CM et al (2010a) A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res 18(2–3):253–273

    Article  Google Scholar 

  • Xiao WJ, Mao QG, Windley BF et al (2010b) Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am J Sci 310(10):1153–1594

    Article  Google Scholar 

  • Xu QQ, Ji JQ, Han BF et al (2008) Petrology, geochemistry and geochronology of the intermediate to mafic dykes in Northern Xinjiang since late Paleozoic. Acta Petrol Sinica 24(5):977–996

    Google Scholar 

  • Xu YG, He B, Huang XL et al (2007) The dabate over mantle plumes and how to test the plume hypothesis. Earth Sci Front 14(2):1–9

    Article  Google Scholar 

  • Yang CX, Wang QH, Gao X et al (2015) Geochemical characteristics and tectonic setting of diabase in Beishan Gansu. Gansu Geol 24(1):19–23

    Google Scholar 

  • Yin JY, Yuan C, Sun M et al (2009) Sanukitic dykes in west Junggar, Xinjiang: geochemical features, petrogenensis and links to Cu–Au mineralization. Geochimica 38(5):413–423

    Google Scholar 

  • Yin JY, Yuan C, Sun M et al (2012) Age, geochemical features and possible petrogenesis mechanism of early Permian magnesian diorite in Hatu Xinjiang. Acta Petrol Sinica 28(7):2171–2182

    Google Scholar 

  • Zhan S, Chen Y, Xu B et al (2007) Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball earth hypothesis. Precambr Res 154(3):143–158

    Article  Google Scholar 

  • Zhang CL, Li ZX, Li XH et al (2009a) Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: age, geochemistry, petrogenesis and tectonic implications. J Asian Earth Sci 35(2):167–179

    Article  Google Scholar 

  • Zhang CL, Zou HB (2013) Comparison between the Permian mafic dykes in Tarim and the western part of central Asian Orogenic Belt (CAOB), NW China: implications for two mantle domains of the Permian Tarim Large igneous province. Lithos 174:15–27

    Article  Google Scholar 

  • Zhang J, Zhang CL, Li HK et al (2014) Revisit to time and tectonic environment of the Aksu blueschist terrane in northern Tarim, NW China: new evidence from zircon U–Pb age Hf isotope. Acta Petrol Sinica 30(11):3357–3365

    Google Scholar 

  • Zhang J, Cheng SH (2017) Are those mafic dikes in Hengshan-Xuanhua-Xinghe area of North China sanukitoids? J Earth Sci Environ 39(1):65–82

    Article  Google Scholar 

  • Zhang LF, Ai YL, Li Q et al (2005) The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang. Acta Petrol Sinica 21(4):1029–1038

    Google Scholar 

  • Zhang LF, Ai YL, Li XP et al (2007a) Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U–Pb dating of zircon from HP/UHP eclogitic rocks. Lithos 96:266–280

    Article  Google Scholar 

  • Zhang XR, Zhao GC, Eizenhöfer PR et al (2016) Tectonic transition from Late Carboniferous subduction to early Permian post-collisional extension in the Eastern Tianshan, NW China: insights from geochronology and geochemistry of mafic–intermediate intrusions. Lithos 256–257:269–281

    Article  Google Scholar 

  • Zhang Z, Zhu W, Shu L et al (2009b) Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of rodinia. Geol Megazine 146(1):150–154

    Article  Google Scholar 

  • Zhang ZL, Qin QM, Cao B et al (2007b) Application of high-resolution satellite images to extraction of dyke attributes. Geogr Geo-Inf Sci 23(3):15–18

    Google Scholar 

  • Zhang ZL, Qin QM, Tian W et al (2008a) Emplacement characteristics and spatial distribution of Permian Mazhartager basic dike swarms in Bachu area, Tarim basin. Acta Petrol Sinica 24(10):2273–2280

    Google Scholar 

  • Zhang ZY, Zhu WB, Shu LS et al (2008b) Thermo-tectonic evolution of Precambrian blueschists in Aksu, Northwest Xinjiang, China. Acta Petrol Sinica 24(12):2849–2856

    Google Scholar 

  • Zhang ZZ, Gu LX, Wu CZ et al (2006) Weiya quartz syenite in early Indosinina from eastern Tianshan mountains: Petrogenesis and tectonic implication. Acta Petrol Sinica 22(5):1135–1149

    Google Scholar 

  • Zhao JX, McCulloch MT (1993) Sm-Nd mineral isochron ages of Late Proterozoic Dyke swarms in Australia: evidence for two distintive events of mafic magmatism and crustal extension. Chem Geol 109:341–354

    Article  Google Scholar 

  • Zhao JX, McCulloch MT (1994) Characterization of a plume-related ~800 Ma magmatic event and its implication for basin information in central-southern Australia. Earth Planet Sci Lett 121:349–367

    Article  Google Scholar 

  • Zheng BH, Zhu WB, Shu LS et al (2008) The protolith of the Aksu Precambrian blueschist and its tectonic setting. Acta Petrol Sinica 24(12):2839–2848

    Google Scholar 

  • Zhou J, Ji JQ, Han BF et al (2008) 40Ar/39Ar Geochronology of mafic dykes in North Xinjiang. Acta Petrol Sinica 24(5):997–1010

    Google Scholar 

Download references

Acknowledgements

This study was co-supported by the National Natural Science Foundation of China (project number 41502201) and the “Western Light” project of the Chinese Academy of Sciences (project number XBBS201301). We are grateful to Prof. Rajesh Srivastava and Prof. Peng for their thoughtful arrangements. We also thank two reviewers for constructive comments which led to major improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, Q., Li, J., Liu, J., Zhou, K. (2019). Spatial and Temporal Distribution Patterns of Mafic Dyke Swarms in Central Asia: Results from Remote-Sensing Interpretation and Regional Geology. In: Srivastava, R., Ernst, R., Peng, P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1666-1_8

Download citation

Publish with us

Policies and ethics