Skip to main content

Giant Circumferential Dyke Swarms: Catalogue and Characteristics

  • Chapter
  • First Online:
Dyke Swarms of the World: A Modern Perspective

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Giant circumferential dyke swarms have a primary geometry that is quasi-circular or quasi-elliptical. Examples and possible examples described previously or identified in this study have outer diameters that range from ~450 to ~2500 km. There has been little study of these features. Here, we present a global catalogue of giant circumferential dyke swarms and discuss their characteristics. All of the identified giant circumferential swarms are of mafic composition. Many, but not all, are associated with a roughly coeval giant radiating dyke swarm whose focus is at or near the centre of the circumferential system. As giant radiating swarms are usually interpreted to focus above mantle plume centres and form a key component of the plumbing system of large igneous provinces (LIPs), it is likely that giant circumferential swarms linked to radiating systems are also plume and LIP related. The largest giant circumferential swarms have diameters comparable to the diameters postulated for the flattened heads of plumes that have risen from the core-mantle boundary, suggesting that they may be associated with the outer edge of a flattening or flattened mantle plume head. Smaller giant circumferential swarms could be linked with small plumes from the mid-mantle or with the edge of a magmatic underplate above a plume head. Giant circumferential dyke swarms on Earth may be analogues of coronae on Venus and similar features on Mars. Coronae are large tectono-magmatic features that typically consist of a quasi-circular or quasi-elliptical graben-fissure system and associated topography (central uplift or depression, and circular rim or moat). In some instances, they are linked to a giant radiating graben-fissure system and LIP-scale volcanism. Both radiating and circumferential graben on Venus and Mars have been interpreted to be underlain by dykes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen N, Bengaard H-J, Friderichsen JD, Van der Voo R (1997) Palaeomagnetism of three dyke swarms in Nansen Land, northern Greenland (83°N). Geol Mijnbouw 76:83–95

    Article  Google Scholar 

  • Aittola M, Kostama V-P (2002) Chronology of the formation process of Venusian novae and the associated coronae. J Geophys Res 107(E1):5112

    Google Scholar 

  • Arndt N (2000) Hot heads and cold tails. Nature 407:458–461

    Article  Google Scholar 

  • Aspler LB, Ernst RE (2003) Dyke-induced graben on Venus and Mars: analogues for Earth’s rock record? In: Lunar and Planetary Science Conference #34, abstract #1711

    Google Scholar 

  • Auden JB (1949) Dykes in western India: a discussion of their relationship with the Deccan traps. Trans Nat Inst Sci India 3:123–157

    Google Scholar 

  • Balkwill HR, Fox FG (1982) Incipient rift zone, western Sverdrup Basin, Arctic Canada. In: Embry AS, Balkwill HR (eds) Arctic geology and geophysics. Canadian Society of Petroleum Geologists, Memoir 8, pp 171–187

    Google Scholar 

  • Bethell E, Ernst RE, Samson C, Buchan KL (2016) Circumferential graben-fissure systems of Venusian coronae as possible analogues of giant circumferential dyke swarms on Earth. In: Lunar and Planetary Science Conference #57, abstract #1471

    Google Scholar 

  • Bondre NR, Hart WK, Sheth HC (2006) Geology and geochemistry of the Sangamner mafic dyke swarm, Western Deccan Volcanic Province, India: implication for regional stratigraphy. J Geol 114:155–170

    Article  Google Scholar 

  • Bozdağ E, Peter D, Lefevre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D (2016) Global adjoint tomography: first-generation model. Geophys J Int 207:1739–1766

    Article  Google Scholar 

  • Bright RM, Amato JM, Denyszyn SW, Ernst RE (2014) U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: testing models for the origin of a post-Grenville Large Igneous Province. Lithosphere 6:135–156

    Article  Google Scholar 

  • Brown G, Platt NH, McGrandle A (1994) The geophysical expression of Tertiary dykes in the southern North Sea. First Break 12(3):137–146

    Google Scholar 

  • Buchan KL, Ernst RE (2004) Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada, Map 2022A, scale: 1:500 000

    Google Scholar 

  • Buchan KL, Ernst RE (2006) Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard and Franz Josef Land. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms—time markers of crustal evolution. Taylor and Francis Group, London, pp 27–48

    Chapter  Google Scholar 

  • Buchan KL, Ernst RE (2015) A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP)—a possible analogue for coronae on Venus. American Geophysical Union-Geological Association of Canada-Mineralogical Association of Canada-Canadian Geophysical Union Joint Assembly, Abstract P42A-05

    Google Scholar 

  • Buchan KL, Ernst RE (2016) Giant circumferential dyke swarms on Earth as possible analogues of coronae on Venus. In: Lunar and Planetary Science Conference #57, abstract #1183

    Google Scholar 

  • Buchan KL, Ernst RE (2017) Giant circumferential and radiating dyke swarms of the High Arctic Large Igneous Province. In: Williamson M-C (ed) GEM 2 High Arctic Large Igneous Province (HALIP) activity: workshop report. Geological Survey of Canada, Open File 8151, pp 9–10

    Google Scholar 

  • Buchan KL, Ernst RE (2018) A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Res 58:39–57

    Article  Google Scholar 

  • Buchan KL, Ernst RE, Bleeker W, Davis WJ, Villeneuve M, van Breeman O, Hamilton M, Söderlund U (2010) Proterozoic magmatic events of the Slave craton, Wopmay orogeny and environs. Geological Survey of Canada, Open File 5985, poster and 25 page report

    Google Scholar 

  • Burchardt S, Troll VR, Mathieu L, Emeleus HC, Donaldson CH (2013) Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber. Sci Rep 3:2891. https://doi.org/10.1038/srep02891

    Article  Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Article  Google Scholar 

  • Bylund G (1992) Palaeomagnetism, mafic dykes and the Protogine Zone, southern Sweden. Tectonophysics 201:49–63

    Article  Google Scholar 

  • Campbell IH (2007) Testing the plume theory. Chem Geol 241:153–176

    Article  Google Scholar 

  • Chadwick WW, Embley RW (1998) Graben formation associated with recent dike intrusions and volcanic eruptions on the mid-ocean ridge. J Geophys Res 103(B5):9807–9825

    Article  Google Scholar 

  • Chadwick WW, Howard KA (1991) The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bull Volc 53:259–275

    Article  Google Scholar 

  • Chadwick WW, Jónsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The May 2005 eruption of Fernandina volcano, Galápagos: the first circumferential dike intrusion observed by GPS and InSAR. Bull Volc 73:679–697

    Article  Google Scholar 

  • Chevallier L, Woodford A (1999) Morpho-tectonics and mechanisms of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S Afr J Geol 102:43–54

    Google Scholar 

  • Chevallier L, Goedhart M, Woodford AC (2001) The influences of dolerite sill and ring complexes on the occurrence of groundwater in Karoo fractured aquifers: a morpho-tectonic approach. Water Research Commission, Report 937/1/01

    Google Scholar 

  • Clark ET (1880) On volcanic foci of eruption in the Konkan. Rec Geol Surv India 13:69–73 and accompanying map

    Google Scholar 

  • Cooper MR, Anderson H, Walsh JJ, Van Dam CL, Young ME, Earls G, Walker A (2012) Palaeogene Alpine tectonics and Icelandic plume-related magmatism and deformation in Northern Ireland. J Geol Soc Lond 169:29–36

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Coutinho JMV (2008) Dyke swarms of the Paraná triple junction, southern Brazil. Geologia USP, Série Cientifica 8(2):29–52

    Google Scholar 

  • Cox GM, Halverson GP, Denyszyn S, Foden J, Macdonald FA (2017) Cryogenian magmatism along the north-western margin of Laurentia: plume or rift? Precambr Res. https://doi.org/10.1016/j.precamres.2017.09.025

    Article  Google Scholar 

  • Cucciniello C, Melluso L, Jourdan F, Mahoney JJ, Meisel T, Morra V (2013) 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province. Geol Mag 150(1):1–17

    Article  Google Scholar 

  • Cucciniello C, Melluso L, Morra V (2015) The Madagascar large igneous province. Large Igneous Provinces Commission website, LIP of the Month for August 2015. http://lips.iavceivolcano.org/15aug. Accessed 19 Apr 2018

  • Davaille A, Smrekar SE, Tomlinson S (2017) Experimental and observational evidence for plume-induced subduction on Venus. Nat Geosci 10:349–355

    Article  Google Scholar 

  • de Kock MO, Ernst RE, Söderlund U, Jourdan F, Hofmann A, Le Gall B, Bertrand H, Chisonga BC, Beukes N, Rajesh HM, Moseki LM, Fuch R (2014) Dykes of the 1.11 Ga Umkondo LIP, southern Africa: clues to a complex plumbing system. Precambr Res 249:129–143

    Article  Google Scholar 

  • Denyszyn SW, Davis DW, Halls HC (2009) Paleomagnetism and U-Pb geochronology of the Clarence Head dykes, Arctic Canada: orthogonal emplacement of mafic dykes in a large igneous province. Can J Earth Sci 46:155–167

    Article  Google Scholar 

  • Denyszyn S, Cox G, Halverson G (2016) Geochemistry and geochronology of circumferential dykes of the Franklin LIP: a rotated perspective on plate reconstruction. Acta Geol Sinica (English Edition) 90(supp. 1):30

    Article  Google Scholar 

  • Dessai AG, Viegas AAA (1995) Multi-generation mafic dyke-swarm related to Deccan magmatism, south of Bombay: implications on the evolution of the western Indian continental margin. Geol Soc India, Memoir 33:435–451

    Google Scholar 

  • Dibner VD (ed) (1998) Geology of Franz Josef Land. Norsk Polarinstitutt, Meddelelse 146, 190 p

    Google Scholar 

  • Dobretsov NL, Kirdyashkin AA, Kirdyashkin AG, Vernikovsky VA, Gladkov IN (2008) Modelling of geochemical plumes and implications for the origin of the Siberian traps. Lithos 100:66–92

    Article  Google Scholar 

  • Dombard AJ, Johnson CL, Richards MA, Solomon SC (2007) A magnetic loading model for coronae on Venus. J Geophys Res 112:E04006. https://doi.org/10.1029/2006JE002731

    Article  Google Scholar 

  • Emeleus CH (1982) The central complexes. In: Sutherland DS (ed) Igneous rocks of the British Isles. Wiley, Chichester, pp 369–425

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces, continental, oceanic, and planetary flood volcanism. American Geophysical Union Geophysical Monograph 100, pp 297–333

    Chapter  Google Scholar 

  • Ernst RE, Buchan KL (1998) Arcuate dyke swarms associated with mantle plumes on Earth: implications for Venusian coronae. In: Lunar and Planetary Science Conference #29, abstract #1021

    Google Scholar 

  • Ernst RE, Buchan KL (2001) The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Special Paper 352, pp 247–265

    Google Scholar 

  • Ernst RE, Buchan KL (2002) Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces. J Geodyn 34:309–342

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Palmer HC (1995) Giant dyke swarms: characteristics, distribution and geotectonic applications. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 3–21

    Google Scholar 

  • Ernst RE, Grosfils EB, Mège D (2001) Giant dike swarms: Earth, Venus and Mars. Ann Rev Earth Sci 29:489–534

    Article  Google Scholar 

  • Ernst RE, Desnoyers DW, Head JW, Grosfils EB (2003) Graben–fissure systems in Guinevere Planitia and Beta Regio (264°–312°E, 24°–60°N), Venus, and implications for regional stratigraphy and mantle plumes. Icarus 164:282–316

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Mäkitie H, Klausen MB, Samson C, Gosfils EB (2014) Giant circumferential mafic dyke swarms on Earth, Mars and Venus. In: Geological Society of America annual meeting, abstract #260-13

    Google Scholar 

  • Ewart A, Marsh JS, Milner SC, Duncan AR, Kamber BS, Armstrong RA (2004) Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: introduction, mafic lavas, and re-evaluation of mantle source components. J Petrol 45:59–105

    Article  Google Scholar 

  • Farnetani CG, Samuel H (2005) Beyond the thermal plume paradigm. Geophys Res Lett 32:L07311

    Article  Google Scholar 

  • Florisbal LM, Heaman LM, Janasi VA, Bitencourt MF (2014) Tectonic significance of the Florianópolis dyke swarm, Paraná-Etendeka magmatic province: a reappraisal based on precise U-Pb dating. J Volcanol Geoth Res 289:140–150

    Article  Google Scholar 

  • French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–99 and extended data file

    Article  Google Scholar 

  • Geological Survey of Northern Ireland (1971) Geology of Belfast and district (special engineering and geology sheet, solid and drift). Scale 1:21 120

    Google Scholar 

  • Geological Survey of Northern Ireland (1977) Geological map of Northern Ireland (solid edition). Department of Commerce, Northern Ireland, scale 1:250 000

    Google Scholar 

  • Gion AM, Williams SE, Müller RD (2017) A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics 36:304–320. https://doi.org/10.1002/2015TC004094

    Article  Google Scholar 

  • Goodwin AM (1996) Principles of Precambrian geology. Academic Press, London

    Google Scholar 

  • Gorbatschev R, Lindh A, Solyom Z, Laitakari I, Aro K, Lobach-Zhuchenko SB, Markov MS, Ivliev AI, and Bryhni I (1987) Mafic dyke swarms of the Baltic Shield. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada, Special Paper 34, pp 361–372

    Google Scholar 

  • Griffiths RW, Campbell IH (1991) Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. J Geophys Res 96(B11):18, 295-18, 310

    Article  Google Scholar 

  • Grosfils EB, Head JW (1994) The global distribution of giant radiating dike swarms on Venus: implications for the global stress state. Geophys Res Lett 21:701–704

    Article  Google Scholar 

  • Guedes E, Heilbron M, Vasconcelos PM, Valeriano CM, Almeida JCH, Teixeira W, Thomaz Filho A (2005) K-Ar and 40Ar/39Ar ages of dikes emplaced in the onshore basement of the Santos Basin, Resnede area, SE Brazil: implications for the south Atlantic opening and Tertiary reactivation. J S Am Earth Sci 18:371–382

    Article  Google Scholar 

  • Halls HC (1982) The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci Can 9:145–154

    Google Scholar 

  • Heaman LM, Easton RM, Hart TR, Hollings P, MacDonald CA, Smyk M (2007) Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can J Earth Sci 44:1055–1086

    Article  Google Scholar 

  • Hellström FA, Johansson Å, Larsen SÅ (2004) Age and emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. Precambr Res 128:39–55

    Article  Google Scholar 

  • Hooper PR (1990) The timing of crustal extension and the eruption of continental flood basalts. Nature 345:246–249

    Article  Google Scholar 

  • Hutchison DR, White RS, Cannon WF, Schulz KJ (1990) Keweenawan hot spot: geophysical evidence for a 1.1 Ga mantle plume beneath the Midcontinent Rift system. J Geophys Res 95:10, 869-10, 884

    Google Scholar 

  • Janasi VA, Freitas VA, Heaman LH (2011) The onset of flood basalt volcanism, northern Paraná basin, Brazil: a precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth Planet Sci Lett 302:147–153

    Article  Google Scholar 

  • Janes DM, Squyres SW, Bindschadler DL, Baer G, Schubert G, Sharpton VL, Stofan ER (1992) Geophysical models for the formation and evolution of coronae on Venus. J Geophys Res 97(E10):16, 055-16, 067

    Google Scholar 

  • Kingsbury CG, Kamo SL, Ernst RE, Söderlund U, Cousens BL (2018) U-Pb geochronology of the plumbing system associated with the Late Cretaceous Strand Fiord Formation, Axel Heiberg Island, Canada: part of the 130-90 Ma High Arctic large igneous province. J Geodyn. https://doi.org/10.1016/j.jog.2017.11.001

    Article  Google Scholar 

  • Kiselev AI, Ernst RE, Yarmolyuk VV, Egorov KN (2012) Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberia. J Asian Earth Sci 45:1–16

    Article  Google Scholar 

  • Koch DM, Manga M (1996) Neutrally buoyant diapirs: a model for Venus. Geophys Res Lett 23:25–228

    Article  Google Scholar 

  • Kontak DJ, Jensen SM, Dostal J, Archibald DA, Kyser TK (2001) Cretaceous mafic dyke swarm, Peary Land, northernmost Greenland: geochronology and petrology. Can Mineral 39:997–1020

    Article  Google Scholar 

  • Kostama V-P, Aittola M (2004) Arcuate graben of Venusian volcano-tectonic structures: the last phase of tectonic activity? Astron Astrophys 428:235–240. https://doi.org/10.1051/0004-6361:200400061

    Article  Google Scholar 

  • Krassilnikov AS, Head JW (2003) Novae on Venus: geology, classification, and evolution. J Geophys Res 108(E9):5108. https://doi.org/10.1029/2002JE001983

    Article  Google Scholar 

  • Krishnamacharlu T (1972) Dykes around Dadiapada, Broach District, Gujarat. Bull Volc 35:947–956

    Article  Google Scholar 

  • Krishnamurthy P (1972) Petrology of the dyke rocks of the western portions of Rajpipla Hills, Broach District, Gujarat, India. Bull Volc 35:930–946

    Article  Google Scholar 

  • Krogh TE, Corfu F, Davis DW, Dunning GR, Heaman LM, Kamo SL, Machado N (1987) Precise U-Pb isotopic ages of diabase dykes and mafic to ultramafic rocks using trace amounts of baddeleyite and zircon. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada, Special Publication 34, pp 331–348

    Google Scholar 

  • Kumar A, Pande K, Bhashkar Venkatesan TR, Rao YJ (2001) The Karnataka Late Cretaceous dykes as products of the Marion hot spot at the Madagascar-India breakup event: evidence from 40Ar-39Ar geochronology and geochemistry. Geophys Res Lett 28:2715–2718

    Article  Google Scholar 

  • MacDonald R, Bagiński B, MacInnnes DA, MacGillivray JC, Fettes DJ (2014) The Palaeogene Bracken Bay-Straiton dyke: composition and controls on intrusion. Scott J Geol 50:57–69

    Article  Google Scholar 

  • MacGregor AG (1949) Dykes of the post-Carboniferous age. In: Eyles VA, Simpson JB, MacGregor AG (eds) Geology of Central Ayrshire (explanation of one-inch sheet 14). Memoirs of the Geological Survey of Scotland, pp 118–123

    Google Scholar 

  • Maclennan J, Jones SM (2006) Regional uplift, gas hydrate dissociation and the origins of the Paleocene-Eocene thermal maximum. Earth Planet Sci Lett 245:65–80

    Article  Google Scholar 

  • Magee KP, Head JW (2001) Large flow fields on Venus: implications for plumes, rift associations, and resurfacing. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Paper 352, pp 81–101

    Google Scholar 

  • Maher HD Jr (2001) Manifestation of the Cretaceous High Arctic Large Igneous Province in Svalbard. J Geol 109:91–104

    Article  Google Scholar 

  • Mäkitie H, Data G, Isabirye E, Mäntärri I, Huhma H, Klausen MB, Pakkenen L, Virransaio P (2014) Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa. J Afr Earth Sci 97:273–296

    Article  Google Scholar 

  • Mastin LG, Pollard DD (1988) Surface deformation and shallow dike intrusion processes at Inyo craters, Long Valley, California. J Geophys Res 93(B11):13, 221-13, 235

    Article  Google Scholar 

  • McHone JG, Anderson DL, Beutel EK, Fialko YA (2005) Giant dikes, rifts, flood basalts, and plate tectonics: a contention of mantle models. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geological Society of America, Special Paper 388, pp 401–420

    Google Scholar 

  • McKenzie D, McKenzie JM, Saunders RS (1992) Dike emplacement on Venus and Earth. J Geophys Res 97(E10):15, 977-15, 990

    Google Scholar 

  • Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Special Paper 352, pp 103–140

    Google Scholar 

  • Mège D, Masson P (1996) A plume tectonics model for the Tharsis province, Mars. Planet Space Sci 44:1499–1546

    Article  Google Scholar 

  • Melluso L, Sheth HC, Mahoney JJ, Morra V, Petrone CM, Storey M (2009) Correlations between silicic volcanic rocks of the St Mary’s Islands (southwestern India) and eastern Madagascar: implications for Late Cretaceous India-Madagascar reconstructions. J Geol Soc Lond 166:283–294

    Article  Google Scholar 

  • Misra AA, Bhattacharya G, Mukherjee S, Bose N (2014) Near N-S paleoextension in the western Deccan region, India: does it link strike-slip tectonics with India-Seychelles rifting? Indian J Earth Sci 103:1645–1680

    Article  Google Scholar 

  • Mitchell JG, Mohr P (1986) K-Ar systematics in Tertiary dolerites from West Connacht, Ireland. Scott J Geol 22:225–240

    Article  Google Scholar 

  • Mohr PA (1971) Ethiopian Tertiary dike swarms. Smithsonian Astrophysical Observatory, Special Report 339

    Google Scholar 

  • Mohr P (1982) Tertiary dolerite intrusions of west-central Ireland. Proc Roy Ir Acad 82(B):53–82

    Google Scholar 

  • Mohr P (1987) The Cill Ala dike swarm, Cos Sligo and Mayo: physical parameters. Ir Nat J 22:328–334

    Google Scholar 

  • Mohr P (1988) The analcime-olivine dolerites of West Connaught, Ireland: classification and genetic problems. Ir J Earth Sci 9:133–140

    Google Scholar 

  • Mohr P, Zanettin B (1988) The Ethiopian flood basalt province. In: Macdougall JD (ed) Continental flood basalts. Kluwer Academic Publishers, Dordrecht, pp 63–110

    Chapter  Google Scholar 

  • Montési LGJ (2001) Concentric dikes on the flanks of Pavonis Mons: implications for the evolution of martian shield volcanoes and mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Special Paper 352, pp 165–181

    Google Scholar 

  • Moore A (1965) The North Gap dyke of the Transkei. Trans Geol Soc S Afr 68:89–120

    Google Scholar 

  • Moreau C, Ohnenstetter D, Diot H, Demaiffe D, Brown WL (1995) Emplacement of the Meugueur-Meugueur cone-sheet (Niger, West Africa), one of the world’s largest igneous ring-structures. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 41–49

    Google Scholar 

  • Mountain ED (1943) The dikes of the Transkei Gaps. Trans Geol Soc S Afr 46:55–73

    Google Scholar 

  • Muirhead JD, Airoldi G, Roweland JV, White JDL (2012) Interconnected sills and inclined-sheet intrusions control shallow magma transport in the Ferrar Large Igneous Province, Antarctica. Geol Soc Am Bull 124:162–180

    Article  Google Scholar 

  • Myers JS (1990) Precambrian tectonic evolution of part of Gondwana, southwestern Australia. Geology 18:537–540

    Article  Google Scholar 

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (2005) Glossary of geology, 5th edition. American Geological Institute, Alexandria, Virginia, USA

    Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. U.S. Geol Surv Bull 1855

    Google Scholar 

  • Öhman T, McGovern PJ (2014) Circumferential graben and the structural evolution of Alba Mons, Mars. Icarus 233:114–125

    Article  Google Scholar 

  • Pearson V, Daigneault R (2009) An Archean megacaldera complex: the Blake River Group, Abitibi greenstone belt. Precambr Res 168:66–82

    Article  Google Scholar 

  • Pehrsson SJ, van Breemen O, Hanmer S (1993) Ages of diabase dyke intrusions, Great Slave Lake shear zone, Northwest Territories. In: Radiogenic age and isotope studies: Report 5, Geological Survey of Canada, Paper 93-2, pp 23–28

    Google Scholar 

  • Peng P (2015) Precambrian mafic dyke swarms in the North China Craton and their geological implications. Sci China Earth Sci 58:649–675

    Article  Google Scholar 

  • Peng P, Zhai M, Ernst RE, Guo J, Liu F, Hu B (2008) A 1.78 Ga large igneous province in the North China craton: the Xiong’er Volcanic Province and the North China dyke swarm. Lithos 101:260–280

    Article  Google Scholar 

  • Peterman ZE, Sims PK (1988) The Goodman swell: a lithospheric flexure caused by crustal loading along the Midcontinent Rift system. Tectonics 7:1077–1090

    Article  Google Scholar 

  • Piragno F, Hoatson DM (2012) A review of Australia’s large igneous provinces and associated mineral systems: implications for mantle dynamics through geological time. Ore Geol Rev 48:2–54

    Article  Google Scholar 

  • Pisarevsky S, Bylund G (2006) Palaeomagnetism of 935 Ma mafic dykes in southern Sweden and implications for the Sveconorwegian Loop. Geophys J Int 166:1095–1104

    Article  Google Scholar 

  • Pisarevsky SA, Wingate MTD, Harris LB (2003) Late Mesproterozoic (ca. 1.2 Ga) palaeomagnetism of the Albany-Fraser orogeny: no pre-Rodinia Australia-Laurentia connection. Geophys J Int 155:F6–F11

    Article  Google Scholar 

  • Pisarevsky SA, Wingate MTD, Li Z-X, Wang X-C, Tohver E, Kirkland CL (2014) Age and paleomagnetism of the 1210 Ma Gnowangerup-Fraser dyke swarm, Western Australia, and implications for Mesoproterozoic paleogeography. Precambr Res 246:1–15

    Article  Google Scholar 

  • Polteau S, Hendriks BWH, Planke S, Ganerød M, Corfu F, Faleide JI, Midtkandal I, Svensen HS, Myklebust R (2016) The Early Cretaceous Barents Sea sill complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeogr Palaeoclimatol Palaeoecol 441:83–95

    Article  Google Scholar 

  • Preston J (2001) Tertiary igneous activity. In: Holland CH (ed) The geology of Ireland. Dunedin Academic Press, Edinburgh, pp 353–373

    Google Scholar 

  • Queen M, Heaman LM, Hanes JA, Archibald DA, Farrer E (1996) 40Ar/39Ar phlogopite and U-Pb perovskite dating of lamprophyre dykes from the eastern Lake Superior region: evidence for a 1.14 Ga magmatic precursor in Midcontinent Rift volcanism. Can J Earth Sci 33:958–965

    Article  Google Scholar 

  • Radhakrishna T, Joseph M (2012) Geochemistry and paleomagnetism of Late Cretaceous mafic dikes in Kerala, southwest coast of India in relation to large igneous provinces and mantle plumes in the Indian Ocean region. Geol Soc Am Bull 124:240–255

    Article  Google Scholar 

  • Radhakrishna T, Joseph M, Thampi PK, Mitchell JG (1990) Phanerozoic mafic dyke intrusions from the high grade terrain of southwestern India: K-Ar isotope and geochemical implications. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, Rotterdam, pp 363–372

    Google Scholar 

  • Rainbird RH, Ernst RE (2001) The sedimentary record of mantle-plume uplift. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Special Paper 352, pp 227–245

    Google Scholar 

  • Raposo MIB (1997) Magnetic fabric and its significance in the Florianópolis dyke swarm, southern Brazil. Geophys J Int 131:159–170

    Article  Google Scholar 

  • Ray R, Sheth HC, Mallik J (2007) Structure and emplacement of the Nandurbar-Dhule mafic dyke swarm, Deccan Traps, and the tectonomagnatic evolution of flood basalts. Bull Volc 69:537–551

    Article  Google Scholar 

  • Renne PR, Deckart K, Ernesto M, Féraud G, Piccirillo EM (1996) Age of the Ponta Grossa dike swarm (Brazil), and implications to Paraná flood volcanism. Earth Planet Sci Lett 144:199–211

    Article  Google Scholar 

  • Renne PR, Sprain CJ, Richards MA, Self S, Vanderkluysen L, Pande K (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350:76–78

    Article  Google Scholar 

  • Ricci J, Quidelleur X, Pavlov V, Orlov S, Shatsillo A, Courtillot V (2013) New 40Ar/39Ar and K-Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian-Famennian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 386:531–540

    Article  Google Scholar 

  • Rickers F, Fichtner A, Trampert J (2013) The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet Sci Lett 367:9–51

    Article  Google Scholar 

  • Rubin AM (1992) Dike-induced faulting and graben subsistence in volcanic rift zones. J Geophys Res 97(B2):1839–1858

    Article  Google Scholar 

  • Rudolph ML, Lekié V, Lithgow-Bertelloni C (2015) Viscosity jump in Earth’s mid-mantle. Science 350(6266):1349–1352

    Article  Google Scholar 

  • Ruotoistenmäki T (2014) Geophysical characteristics of Asza shear, Nagasongola discontinuity and ring dyke complex in Uganda. J Afr Earth Sci 93:23–41

    Article  Google Scholar 

  • Ryabov VV, Shevko AY, Gora MP (2014) Trap magmatism and ore formation in the Siberian Noril’sk region, Trap petrology, vol 1. Springer, Dordrecht

    Book  Google Scholar 

  • Sant DA, Karanth RV (1990) Emplacement of dyke swarms in the Lower Narmada Valley, western India. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, Rotterdam, pp 383–389

    Google Scholar 

  • Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR, Gertsch B (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–184

    Article  Google Scholar 

  • Senger K, Tveranger J, Ogata K, Braathen A, Planke S (2014) Late Mesozoic magmatism in Svalbard: a review. Earth Sci Rev 139:123–144

    Article  Google Scholar 

  • Shpount BR, Oleinikov BV (1987) A comparison of mafic dyke swarms from the Siberian and Russian platforms. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada, Special Paper 34, pp 379–383

    Google Scholar 

  • Sial AN, Oliveira EP, Choudhuri A (1987) Mafic dyke swarms of Brazil. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada, Special Paper 34, pp 467–481

    Google Scholar 

  • Sleep NH (2006) Mantle plumes from top to bottom. Earth Sci Rev 77:231–271

    Article  Google Scholar 

  • Smrekar SE, Stofan ER (1997) Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277:1289–1294

    Article  Google Scholar 

  • Smythe DK, Russell MJ, Skuce AG (1995) Intra-continental rifting from the major late Carboniferous quartz-dolerite dyke swarm of NW Europe. Scott J Geol 31:151–162

    Article  Google Scholar 

  • Söderlund U, Isachsen CE, Bylund G, Heaman LM, Patchett PJ, Vervoort JD, Andersson UB (2005) U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib Miner Petrol 150:174–194

    Article  Google Scholar 

  • Spaggiari CV, Bodorkos S, Barquero-Molina M, Tyler IM, Wingate MTD (2009) Interpreted bedrock geology of the south Yilgarn and central Albany–Fraser Orogen, Western Australia. Geological Survey of Western Australia, Record 2009/10

    Google Scholar 

  • Spreight JM, Skelhorn RR, Sloan T, Knaap RJ (1982) The dykes swarms of Scotland. In: Sutherland DS (ed) Igneous rocks of the British Isles. Wiley, Chichester, pp 449–459

    Google Scholar 

  • Squyres SW, Janes DM, Baer G, Bindschadler DL, Schubert G, Sharpton VL, Stofan ER (1992) The morphology and evolution of coronae on Venus. J Geophys Res 97(E8):13, 611-13, 634

    Article  Google Scholar 

  • Stark JC, Wang X-C, Denyszyn SW, Li Z-X, Rasmussen B, Zi J-W, Sheppard S, Liu Y (2018) Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambr Res. https://doi.org/10.1016/j.precamres.2017.12.036

    Article  Google Scholar 

  • Stofan ER, Smrekar SE (2005) Large topographic rises, coronae, large flow fields, and large volcanoes on Venus: evidence for mantle plumes? In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geological Society of America Special Paper 288, pp 841–861

    Chapter  Google Scholar 

  • Stofan ER, Sharpton VL, Schubert G, Baer G, Bindschadler DL, Janes DM, Squyres SW (1992) Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J Geophys Res 97(E8):13, 347-13, 378

    Article  Google Scholar 

  • Storey M, Mahoney JJ, Saunders AD, Duncan RA, Kelley SP, Coffin MF (1995) Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267:852–855

    Article  Google Scholar 

  • Studd D, Ernst RE, Samson C (2011) Radiating graben-fissure systems in the Ulfrun Regio area, Venus. Icarus 215:279–291

    Article  Google Scholar 

  • Svensen H, Corfu F, Polteau S, Hammer Ø, Planke S (2012) Rapid magma emplacement in the Karoo large igneous province. Earth Planet Sci Lett 325–326:1–9

    Article  Google Scholar 

  • Tack L, Wingate MTD, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M (2010) The 1375 Ma “Kibaran event” in Central Africa: prominent emplacement of bimodal magmatism under extensional regime. Precambr Res 180:63–84

    Article  Google Scholar 

  • Thompson P (1985) Dating the British Tertiary Igneous Province in Ireland by the 40Ar/39Ar stepwise degassing method. Unpublished Ph.D. thesis. University of Liverpool, United Kingdom

    Google Scholar 

  • Thompson RN, Gibson SA (1991) Subcontinental mantle plumes, hotspots and pre-existing thinspots. J Geol Soc Lond 148:973–977

    Article  Google Scholar 

  • Thompson PF, Tackley PJ (1998) Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity. Geophys Res Lett 25:1999–2002

    Article  Google Scholar 

  • Thórarinsson SB, Söderlund U, Døssing A, Holm PM, Ernst RE, Tegner C (2015) Rift magmatism on the Eurasia basin margin: U-Pb baddeleyite ages of alkaline dyke swarms in North Greenland. J Geol Soc 172:721–726

    Article  Google Scholar 

  • Torsvik TH, Tucker RD, Ashwal LD, Carter LM, Jamtveit B, Vidyadharan KT, Venkataramana P (2000) Late Cretaceous India-Madagascar fit and timing of breakup related magmatism. Terra Nova 12:220–224

    Article  Google Scholar 

  • Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008) Long term stability in deep mantle structure: evidence from the ~300 Ma Skagerrak-Centred Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267:444–452

    Article  Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333

    Article  Google Scholar 

  • Vanderkluysen L, Mahoney JJ, Hooper PR, Sheth HC, Ray R (2011) The feeder system of the Deccan Traps (India): insights from dike geochemistry. J Petrol 52:315–343

    Article  Google Scholar 

  • Walker GPL (1959) Some observations on the Antrim basalts and associated dolerite intrusions. Proc Geol Assoc 70:179–205

    Article  Google Scholar 

  • Wang W-C, Li Z-X, Li J, Pisarevsky SA, Wingate MTD (2014) Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume-lithosphere interaction. Precambr Res 241:85–103

    Article  Google Scholar 

  • Wang X-C, Wilde SA, Xu B, Pang C-J (2016) Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos 261:5–45

    Article  Google Scholar 

  • Watters TR (1989) Periodically spaced anticlines of the Columbia Plateau. In: Reidel SP, Hooper PR (eds) Volcanism and tectonism in the Columbia River flood-basalt province. Geologcial Society of America, Special Paper 239, pp 283–292

    Google Scholar 

  • Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res 107(E8):5057. https://doi.org/10.1029/2001JE001593

    Article  Google Scholar 

  • Wingate MTD, Pidgeon RT (2005) The Marnda Moorn LIP, a late Mesproterozoic large igneous province in the Yilgarn craton, Western Australia. Large Igneous Provinces Commission website, LIP of the Month for July 2005. http://lips.iavceivolcano.org/05jul. Accessed 19 Apr 2018

  • Wingate MTD, Campbell IH, Harris LB (2000) SHRIMP baddeleyite age for the Fraser dyke swarm, southeastern Yilgarn craton, Western Austrtalia. Aust J Earth Sci 47:309–313

    Article  Google Scholar 

  • Wyche S, Pawley MJ, Chen SF, Ivanic TJ, Zibra I, VanKranendonk MJ, Spaggiari CV, Wingate MTD (2013) Geology of the northern Yilgarn craton. In: Wyche S, Ivanic TJ, Zibra I (compilers) Youanmi and Southern Carnarvon seismic and magnetotelluric (MT) workshop 2013. Geological Survey of Western Australia, Record 2013/6, pp 33–63

    Google Scholar 

  • Zimbelman JR, Edgett KS (1992) The Tharsis Montes, Mars: comparison of volcanic and modified landforms. Proc Lunar Planet Sci 22:31–44

    Google Scholar 

Download references

Acknowledgements

We thank Erin Bethell, Benoit Saumur, Sally Pehrsson, Eric Grosfils, Daniel Mège, Marie-Claude Williamson and Laurent Montési for discussions on circumferential dykes on Earth, coronae on Venus and/or potential analogues on Mars. Sally Pehrsson, Michiel de Kock and Franco Pirajno provided helpful reviews of the manuscript. R. Ernst has been partially supported from Mega-Grant 14.Y26.31.0012 of the Russian Federation. This is Natural Resources Canada contribution #20180022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Buchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchan, K.L., Ernst, R.E. (2019). Giant Circumferential Dyke Swarms: Catalogue and Characteristics. In: Srivastava, R., Ernst, R., Peng, P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1666-1_1

Download citation

Publish with us

Policies and ethics