Skip to main content

Microalgae: An Untapped Resource for Natural Antimicrobials

  • Chapter
  • First Online:
The Role of Microalgae in Wastewater Treatment

Abstract

Numerous biochemical compounds are synthesized by algae in a wide variety of ecosystems. To date, more than 18,000 new bioactive compounds have been isolated from marine algae; most are still uncharacterized. Therefore, the identification of novel prospective antimicrobials from microalgae presents a unique opportunity. A number of investigations have explored the therapeutic potential of algal extracts and extracellular compounds from a wide range of microalgae; they have confirmed antibacterial, antiprotozoal, antiviral, antifungal, and anti-plasmodial activity. Chemical groups such as phenols, fatty acids, indoles, terpenes, acetogenins, and some volatile halogenated hydrocarbons derived from microalgae have shown antimicrobial activity. For example, supercritical extracts of the microalgal Chaetoceros muelleri have shown antimicrobial activity due to its lipid composition. Many algal species are also effective against a range of bacteria. For example, Pithophora oedogonium targets Salmonella and Staphylococcus spp. The algae Rivularia bullata, Nostoc spongiaeforme, Codium fragile, Colpomenia peregrina Sauvageau, Cystoseira barbata, and Zanardiniatypus are active against many Gram-negative and Gram-positive bacteria.

Multidrug-resistant bacteria pose an increasing challenge to global health, with the future efficacy of antimicrobial drugs being uncertain. Most antimicrobial agents that are successfully used in clinical practice have drawbacks such as toxicity, lack of efficacy, and high costs; furthermore, their frequent use can result in the emergence of resistant strains of bacteria. Therefore, the development of alternative biodegradable compounds from natural sources with limited side effects is urgently needed. To date, the commercial applications of microalgae-derived compounds has not received as much attention as the fields of antibiotics production, pharmaceuticals, and supplementary biologically active compounds. However, microalgae are destined to become an important raw material for the efficient production of amino acids, vitamins, and other pharmaceuticals. The cultivation of microalgae may provide detailed insights on their practical applications and biotechnological characteristics, which may help researchers develop compounds of interest for their biomedical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdo SM, El-Senousy WM, Ali GH et al (2012) Antiviral activity of freshwater algae. J Appl Pharm Sci 2:21–25

    Google Scholar 

  2. Abou Zeid AH, Aboutabl EA, Sleem AA et al (2014) Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities. Carbohydr Polym 113:62–66

    Article  CAS  Google Scholar 

  3. Asthana R, Srivastava A, Singh AP et al (2006) Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J Appl Phycol 18:33–39

    Article  CAS  Google Scholar 

  4. Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J Acquir Immune Defic Syndr Hum Retrovirology 18:7–12

    Article  CAS  Google Scholar 

  5. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  Google Scholar 

  6. Barbosa JP, Pereira RC, Abrantes JL et al (2004) In vitro antiviral diterpenes from the Brazilian brown alga Dictyota pfaffii. Planta Med 70:856–860

    Article  CAS  Google Scholar 

  7. Beaulieu L, Bondu S, Doiron K et al (2015) Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods 17:685–697

    Article  CAS  Google Scholar 

  8. Besednova NN, Zaporozhets TS, Somova LM et al (2015) Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 20:89–97

    Article  CAS  Google Scholar 

  9. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  CAS  Google Scholar 

  10. Bold HC, Wynne MJ (1985) Introduction to the algae structure and reproduction, 2nd edn. Prentice-Hall Inc, Englewood Cliffs, pp 1–33

    Google Scholar 

  11. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15. https://doi.org/10.1007/BF00003544

    Article  CAS  Google Scholar 

  12. Bui HTN, Jansen R, Pham HTL, Mundt S (2007) Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 70:499–503. https://doi.org/10.1021/np060324m

    Article  CAS  Google Scholar 

  13. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976. https://doi.org/10.1128/AAC.01009-09

    Article  CAS  Google Scholar 

  14. Cˇ ermák L, Pražáková Š, Marounek M et al (2015) Effect of green alga Planktochlorella nurekis on selected bacteria revealed antibacterial activity in vitro. Czech J Anim Sci 60:427–435

    Article  Google Scholar 

  15. Cardllina JH, Moore RE, Arnold EV, Clardy J (1979) Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont. J Organomet Chem 44:4039–4042. https://doi.org/10.1021/jo01337a003

    Article  Google Scholar 

  16. Cardozo KHM, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78. https://doi.org/10.1016/j.cbpc.2006.05.007

    Article  CAS  Google Scholar 

  17. Chang T, Ohta S, Ikegami N et al (1993) Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresour Technol 44:149–153

    Article  CAS  Google Scholar 

  18. Das BK, Pradhan J, Pattnaik PK et al (2005) Production of antibacterial from the fresh water alga Euglena viridis (Ehren). World J Microbial Biotech 21:45–50

    Article  CAS  Google Scholar 

  19. De Felicio R, Dealbuquerque S, Young MCM et al (2010) Trypanocidal lei-shmanicidal and antifungal potential from marine red alga Bostrychia tenella J Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769

    Article  Google Scholar 

  20. De Morais MG, Vaz BDS, De Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:835761. https://doi.org/10.1155/2015/835761

    Article  CAS  Google Scholar 

  21. Desbois AP, Lebl T, Yan LM et al (2008) Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbiol Biotechnol 81:755–764

    Article  CAS  Google Scholar 

  22. Duda-Chodak A (2013) Impact of water extracts of spirulina (WES) on bacteria, yeasts and molds. Acta Sci Pol Technol Aliment 12:33–39

    Google Scholar 

  23. El Shafay SM, Ali SS, El-Sheekh MM (2016) Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res 42:65–74

    Article  Google Scholar 

  24. El-Sheekh MM, Osman MEH, Dyab MA, Amer MS (2006) Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol 21:42–50. https://doi.org/10.1016/j.etap.2005.06.006

    Article  CAS  Google Scholar 

  25. Emad AS, Sanaa MMS, Vikramjit S (2010) Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J Med Plant Res 4:2622–2632. https://doi.org/10.5897/JMPR09.300

    Article  Google Scholar 

  26. Feldmann SC, Reynaldi S, Stortz CA et al (1999) Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 6:335–340

    Article  Google Scholar 

  27. Fenical W, Sims JJ (1974) Cycloeudesmol, an antibiotic cyclopropane containing sesquiterpene from the marine alga, chondria oppositiclada dawson. Tetrahedron Lett 15:1137–1140. https://doi.org/10.1016/S0040-4039(01)82427-8

    Article  Google Scholar 

  28. Fernandes P (2006) Antibacterial discovery and development – the failure of success? Nat Biotechnol 24:1497–1503. https://doi.org/10.1038/nbt1206-1497

    Article  CAS  Google Scholar 

  29. Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour Technol 101:4144–4150. https://doi.org/10.1016/j.biortech.2009.12.139

    Article  CAS  Google Scholar 

  30. Fukuyama Y, Kodaama M, Miura I et al (1989) Anti-plasmin inhibitor V. Structures of novel dimeric eckols isolated from the brown alga Ecklonia kurome Okamura. Chem Pharm Bull 37:2438–2440

    Article  CAS  Google Scholar 

  31. Garson J (1989) Marine natural products. Nat Prod Rep 6:143–170

    Article  CAS  Google Scholar 

  32. Ghasemi Y, Moradian A, Mohagheghzadeh A et al (2007) Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. J Biol Sci 7:904–910. https://doi.org/10.3923/jbs.2007.904.910

    Article  Google Scholar 

  33. Ghasemi Y, Yazdi MT, Shafiee A et al (2004) Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharm Biol 42:318–322. https://doi.org/10.1080/13880200490511918

    Article  CAS  Google Scholar 

  34. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol Prog 27:597–613. https://doi.org/10.1002/btpr.575

    Article  CAS  Google Scholar 

  35. Gutierrez RMP, Flores AM, Solis RV et al (2008) Two new antibacterial norbietane diterpenoids from cyanobacterium Micrococcus lacustris. J Nat Med 62:328–331

    Article  CAS  Google Scholar 

  36. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047. https://doi.org/10.1016/j.rser.2009.11.004

    Article  CAS  Google Scholar 

  37. Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother https://doi.org/10.1093/jac/dkp256

  38. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87. https://doi.org/10.1021/np960017o

    Article  CAS  Google Scholar 

  39. Hernández AJ, Romero A, Gonzalez-Stegmaier R et al (2016) The effects of supplemented diets with a phytopharmaceutical preparation from herbal and macroalgal origin on disease resistance in rainbow trout against Piscirickettsia salmonis. Aquaculture 454:109–117

    Article  Google Scholar 

  40. Hernández-Corona A, Nieves I, Meckes M et al (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res 56:279–285. https://doi.org/10.1016/S0166-3542(02)00132-8

    Article  Google Scholar 

  41. Herrero M, Ibáñez E, Cifuentes A et al (2006a) Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J Food Prot 69:2471–2477

    Article  CAS  Google Scholar 

  42. Herrero M, Jaime L, Martín-Álvarez PJ et al (2006b) Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem 54:5597–5603. https://doi.org/10.1021/jf060546q

    Article  CAS  Google Scholar 

  43. Hillison CI (1977) Seaweeds, a color-coded, illustrated guide to common marine 1977. Plants of east coast of the United States, Keystone Books. The Pennsylvania State University Press, pp 1–5

    Google Scholar 

  44. Holanda ML, Melo VMM, Silva LMCM (2005) Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz J Med Biol Res 38:1769–1773

    Article  CAS  Google Scholar 

  45. Hosseini Tafreshi A, Shariati M (2009) Dunaliella biotechnology: methods and applications. J Appl Microbiol 107:14–35. https://doi.org/10.1111/j.1365-2672.2009.04153.x

    Article  CAS  Google Scholar 

  46. Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93:703–709. https://doi.org/10.1002/jsfa.6023

    Article  CAS  Google Scholar 

  47. Ireland C, Faulknar DJ (1977) Diterpenes from Dolabella californica. J Organomet Chem 42:3157–3162

    Article  CAS  Google Scholar 

  48. Ishimi Y, Sugiyama F, Ezaki J et al (2006) Effects of Spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice. Biosci Biotechnol Biochem 70:363–368. https://doi.org/10.1271/bbb.70.363

    Article  CAS  Google Scholar 

  49. Costa JAC, Morais MG (2013) Microalgae for food production. In: Soccol CR, Pandey A, Larroche C (eds) Fermentation process engineering in the food industry. Taylor & Francis, Boca Raton, p 486

    Google Scholar 

  50. Jaki B, Orjala J, Heilmann J et al (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343

    Article  CAS  Google Scholar 

  51. Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J Nat Prod 62:502–503. https://doi.org/10.1021/np980444x

    Article  CAS  Google Scholar 

  52. Jyotirmayee P, Sachidananda D, Das BK (2014) Antibacterial activity of freshwater microalgae: a review. Afr J Pharm Pharmacol 8:809–818. https://doi.org/10.5897/AJPP2013.0002

    Article  CAS  Google Scholar 

  53. Kadam SU, O’Donnell CP, Rai DK et al (2015) Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280

    Article  CAS  Google Scholar 

  54. Kamei Y, Isnansetyo A (2003) Lysis of methicillin-resistant Staphylococcus aureus by 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents 21:71–74

    Article  CAS  Google Scholar 

  55. Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae in laboratory culture. Br Phycol J 24:191–194

    Article  Google Scholar 

  56. Kenji LK, Lee JB, Hayashi K et al (2005) Isolation of an antiviral polysacharide, nostoflan, from a terrestrial cyanobacteium, Nostoc flagilliforme. J Nat Prod 68:1037–1041

    Article  Google Scholar 

  57. Kokou F, Makridis P, Kentouri M, Divanach P (2012) Antibacterial activity in microalgae cultures. Aquac Res 43:1520–1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x

    Article  Google Scholar 

  58. Lane AL, Stout EP, Lin AS et al (2009) Antimalarial bromophycolides J-Q from the Fijian red alga Callophycus serratus. J Organomet Chem 74:2736–2742

    Article  CAS  Google Scholar 

  59. Lee JH, Eom SH, Lee EH et al (2014) In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29:47–55

    Article  Google Scholar 

  60. Linnington RG, Edwards DJ, Shuman CF et al (2008) Symplocamide A, a potent cytototoxin and chymotrypsin inhibitor from marine cyanobacterium. Symploca sp. J Nat Prod 71:22–27

    Article  Google Scholar 

  61. Linnington RG, Gonzalez J, Urena L et al (2007) Venturamides A and B: antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70:397–401

    Article  Google Scholar 

  62. Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64:29–36. https://doi.org/10.1093/jac/dkp255

    Article  CAS  Google Scholar 

  63. Lustigman B (1988) Comparison of antibiotic production from four ecotypes of the marine alga, Dunaliella. Bull Environ Contam Toxicol 40:18–22

    Article  CAS  Google Scholar 

  64. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  Google Scholar 

  65. Maverakis E, Kim K, Shimoda M (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13

    Article  CAS  Google Scholar 

  66. Mayer AMS, Hamann MT (2005) Marine pharmacology in 2001-2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiova. Comp Biochem Physiol Toxicol Pharmacol CBP 140:265–286. https://doi.org/10.1016/j.cca.2005.04.004

    Article  CAS  Google Scholar 

  67. Mendes RL, Nobre BP, Cardoso MT et al (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334. https://doi.org/10.1016/S0020-1693(03)00363-3

    Article  CAS  Google Scholar 

  68. Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina)maxima: comparison with organic solvent extraction. Food Chem 99:57–63. https://doi.org/10.1016/j.foodchem.2005.07.019

    Article  CAS  Google Scholar 

  69. Moraes de Souza M, Prietto L, Ribeiro AC et al (2011) Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciencia e Agrotecnologia 35:1050–1058

    Article  Google Scholar 

  70. Najdenski HM, Gigova LG, Iliev II et al (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540

    Article  CAS  Google Scholar 

  71. Naviner M, Berge J-P, Durand P, Le Bris H et al (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174:15–24. https://doi.org/10.1016/S0044-8486(98)00513-4

    Article  CAS  Google Scholar 

  72. Nobre B, Marcelo F, Passos R et al (2006) Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 223:787–790. https://doi.org/10.1007/s00217-006-0270-8

    Article  CAS  Google Scholar 

  73. Ohta S, Shiomi Y, Kawashima A et al (1995) Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J Appl Phycol 7:121–127. https://doi.org/10.1007/BF00693057

    Article  CAS  Google Scholar 

  74. Osterhage C, Kaminsky R, Koeing GM et al (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org ChemJ Org Chem 65:6412–6417

    Article  CAS  Google Scholar 

  75. Ozemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile components and various extracts of Spirulina platensis. Phytother Res 18:754–757

    Article  Google Scholar 

  76. Palavra AMF, Coelho JP, Barroso JG et al (2011) Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids 60:21–27. https://doi.org/10.1016/j.supflu.2011.04.017

    Article  CAS  Google Scholar 

  77. Pandian P, Selvamuthukumar S, Manavalan R et al (2011) Screening of antibacterial and antifungal activities of red marine algae Acanthaphora spicifera (Rhodophyceae). Biomed Sci Res 3:444–448

    CAS  Google Scholar 

  78. Park H, Kurokawa M, Shiraki K et al (2005) Antiviral activity of the marine alga Symphyocladia latiuscula. Against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Biol Pharm Bull 28:2258–2262

    Article  CAS  Google Scholar 

  79. Park HJ, Chung HY, Kim I et al (1999) Antioxidative activity of 2, 3, 6-tribromo-4, 5 dihydroxybenzyl methyl ether from Symphyocladia latiuscula. J Fish Sci Technol 2:1–7

    Google Scholar 

  80. Ploutno A, Carmeli S (2000) Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 63:1524–1526. https://doi.org/10.1021/np0002334

    Article  CAS  Google Scholar 

  81. Pop-Vicas A, Opal SM (2014) The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence 5:206–212. https://doi.org/10.4161/viru.26210

    Article  Google Scholar 

  82. Pratt R, Daniels TC, Eiler JJ, Gunnison JB et al (1944) Chorellin, an antibacterial substance from chlorella. Science 99:351–352

    Article  CAS  Google Scholar 

  83. Pratt R, Mautner H, Gardner GM et al (1951) Report on antibiotic activity of seaweed extracts. J Am Pharm Assoc Am Pharm Assoc (Baltim) 40:575–579

    Article  CAS  Google Scholar 

  84. Preetha K, John L, Subin C, Vijayan K (2012) Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian Salinas and their diversity. Aquat Biosyst 8:27. https://doi.org/10.1186/2046-9063-8-27

    Article  CAS  Google Scholar 

  85. Quereshi MA, Ali RA, Hunter R (1995) Immuno-modulatory effects of Spirulina platensis supplementation in chickens. In: Proceedings of the 44th Western poultry disease conference. Sacramento, pp 117–121

    Google Scholar 

  86. Raveh A, Carmeli S (2007) Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J Nat Prod 70:196–201. https://doi.org/10.1021/np060495r

    Article  CAS  Google Scholar 

  87. Romano I, Bellitti MR, Nicolaus B et al (2000) Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus. Phytochemistry 54:289–294

    Article  CAS  Google Scholar 

  88. Sakemi S, Higa T, Jefford CW et al (1986) Venustatriol: a new antiviral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27:4287–4290

    Article  CAS  Google Scholar 

  89. Sarada DVL, Kumar CS, Rengasamy R (2011) Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World J Microbiol Biotechnol 27:779–783. https://doi.org/10.1007/s11274-010-0516-2

    Article  CAS  Google Scholar 

  90. Seenivasan R, Indu H, Archana G et al (2010) The antibacterial activity of some marine algae from South East Coast of India. Am-Eur J Agric Environ Sci 9:480–489

    Google Scholar 

  91. Sharma A (2011) Antimicrobial resistance: no action today, no cure tomorrow. Indian J Med Microbiol 29:91–92. https://doi.org/10.4103/0255-0857.81774

    Article  CAS  Google Scholar 

  92. Sheng J, Zeng L, Sun H, Huang A (2001) Biological activities of protein-polysaccharides from Nostoc commune. J Guang Acad Sci 17:20–23

    Google Scholar 

  93. Sheridan C (2006) Antibiotics au naturel. Nat Biotechnol 24:1494–1496. https://doi.org/10.1038/nbt1206-1494

    Article  CAS  Google Scholar 

  94. Simic S, Kosanic MM, Rankovic BR (2012) Evaluation of in vitro antioxidant ant antimicrobial activities of green algae Trentepohloa umbrina. Not Bot Horti Agro 40:86–91

    Article  CAS  Google Scholar 

  95. Simmons LT, Engene N, Urena LD et al (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from marine cyanobacterium. Oscillatoria Nigro Viridis. J Nat Prod 71:1544–1550

    Article  Google Scholar 

  96. Singh RK, Tiwari SP, Rai AK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibio 64:401–412

    Article  CAS  Google Scholar 

  97. Sivakumar J, Santhanam P (2011) Antipathogenic activity of Spirulina powder. Recent Res Sci Technol 3:158–161

    Google Scholar 

  98. Smee DF, Bailey KW, Wong M-H et al (2008) Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antivir Res 80:266–271

    Article  CAS  Google Scholar 

  99. Soltani M, Khosravi A-R, Asadi F, Shokri H (2012) Evaluation of protective efficacy of Spirulina platensis in Balb/C mice with candidiasis. J Mycol Med 22:329–234. https://doi.org/10.1016/j.mycmed.2012.10.001

    Article  CAS  Google Scholar 

  100. Strathmann M, Wingender J, Flemming HC (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50:237–248

    Article  CAS  Google Scholar 

  101. Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 104:119–189. https://doi.org/10.1016/0378-1097(93)90506-W

    Article  CAS  Google Scholar 

  102. Temina M, Rezankova H, Rezanka T, Dembitsky VM (2007) Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol Res 162:308–321. https://doi.org/10.1016/j.micres.2006.01.010

    Article  CAS  Google Scholar 

  103. Lancet T (2009) Urgently needed: new antibiotics. Lancet 374:1868. https://doi.org/10.1016/S0140-6736(09)62076-6

    Article  Google Scholar 

  104. Topeu G, Aydogmus Z, Imre S et al (2003) Brominated sesquiterpenes from the red alga Laurencia obtusa. J Nat Prod 66:1505–1508

    Article  Google Scholar 

  105. Volk RB (2008) A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol Res 163:161–167. https://doi.org/10.1016/j.micres.2006.03.015

    Article  Google Scholar 

  106. Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186. https://doi.org/10.1016/j.micres.2005.08.005

    Article  CAS  Google Scholar 

  107. Wang H, Li YL, Shen WZ et al (2007) Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bot Mar 50:185–190

    CAS  Google Scholar 

  108. Wang M, Xu YN, Jiang GZ et al (2000) Membrane lipids and their fatty acid composition in Nostoc flagelliforme cells. Acta Bot Sin 42:1263–1266

    CAS  Google Scholar 

  109. Washida K, Koyama T, Yamada K et al (2006) Karatungoils A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett 47:2521–2525. https://doi.org/10.1016/j.tetlet.2006.02.045

    Article  CAS  Google Scholar 

  110. Wei Y, Liu Q, Xu C et al (2015) Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J Aquat Food Prod Technol 25:323–333

    Article  Google Scholar 

  111. Whitton BA (2008) Cyanobacterial diversity in relation to the environment. NATO Secur through Sci Ser C Environ Secur 17–43. https://doi.org/10.1007/978-1-4020-8480-5_2

  112. Wright JLC, Boyd RK, de Freitas ASW et al (1989) Identification of domic acid, a neuroexcitatory amino acid in toxic mussels from Eastern Pince Edward Island. Can J Chem 67:481–490

    Article  CAS  Google Scholar 

  113. Yu SH, Wu SJ, Wu JY et al (2015) Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydr Polym 126:97–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enketeswara Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, J., Subudhi, E. (2019). Microalgae: An Untapped Resource for Natural Antimicrobials. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_8

Download citation

Publish with us

Policies and ethics