Skip to main content

Regulation of Transcription by Circular RNAs

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Circular RNAs (circRNAs) are a class of noncoding RNA that are present in wide variety of cells in various tissue types across species. They are non-polyadenylated, single-stranded, covalently closed RNAs. CircRNAs are more stable than other RNAs due to lack of 5′ or 3′ end leading to resistance to exonuclease digestion. The length of circRNAs varies from 1 to 5 exons with retention of introns in mature circRNAs with ~25% frequency. They are primarily found in the cytosol within the cell although the mechanism of their nuclear export remains elusive. However, there is a subpopulation of circRNAs that remain in the nucleus and regulate RNA-Pol-II-mediated transcription. Bioinformatic approaches mining RNA sequencing data enabled genome-wide identification of circRNAs. In mammalian genome over 20% of the expressed genes in cells and tissues can produce these transcripts. Owing to their abundance, stability, and diverse expression profile, circRNAs likely play a pivotal role in regulatory pathways controlling lineage determination, cell differentiation, and function of various cell types. Yet, the impact of circRNA-mediated regulation on various cell transcriptome remains largely unknown. In this chapter, we will review the regulatory effects of circRNAs in the transcription of their own or other genes. Also, we will discuss the association of circRNAs with miRNAs and RNA-binding proteins (RBPs), with special reference to Drosophila circMbl and their role as an “mRNA trap,” which might play a role in its regulatory potential transcriptionally or posttranscriptionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    Article  CAS  Google Scholar 

  2. Grabowski PJ, Zuag AJ, Cech TR (1981) The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23(2):467–476

    Article  CAS  Google Scholar 

  3. Danan M, Schwartz S, Edelheit S et al (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40(7):3131–3142

    Article  CAS  Google Scholar 

  4. Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  Google Scholar 

  5. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  Google Scholar 

  6. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  Google Scholar 

  7. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  Google Scholar 

  8. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  Google Scholar 

  9. Ye CY, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208(1):88–95

    Article  CAS  Google Scholar 

  10. Pan T, Sun X, Liu Y et al (2017) Heat stress alters genome-wide profiles of circular RNA in Arabidopsis. Plant Mol Biol 96(3):217–229

    Article  Google Scholar 

  11. Ghoshal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4(283):283

    Google Scholar 

  12. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  Google Scholar 

  13. Liu YC, Li JR, Sun CH et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(D1):D209–D215

    Article  CAS  Google Scholar 

  14. Chen X, Han P, Zhou T et al (2016) circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 6:34985

    Article  CAS  Google Scholar 

  15. Le Hir H, Gatfield D, Izaurralde E et al (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20(17):4987–4997

    Article  Google Scholar 

  16. Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859(1):163–168

    Article  CAS  Google Scholar 

  17. Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31. https://doi.org/10.1016/j.pharmthera.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  18. Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357–370

    Article  CAS  Google Scholar 

  19. Yang ZG, Awan FM, Du WW et al (2017) The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther 25(9):2062–2074

    Article  CAS  Google Scholar 

  20. Yang Q, Du WW, Wu N et al (2017) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24(9):1609–1620

    Article  CAS  Google Scholar 

  21. Zeng Y, Du WW, Wu Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranotics 7(16):3842–3855

    Article  Google Scholar 

  22. Kos A, Dijkema R, Arnberg AC et al (1986) The hepatitis delta (δ) virus possesses a circular RNA. Nature 323(6088):558–560

    Article  CAS  Google Scholar 

  23. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417

    Article  CAS  Google Scholar 

  24. Weinmann R, Roeder RG (1974) Role of DNA-dependent RNA polymerase III in the transcription of the tRNA and 5S RNA genes. Proc Nalt Acad Sci USA 71(5):1790–1794

    Article  CAS  Google Scholar 

  25. Woychik NA, Liao SM, Kolodziej PA et al (1990) Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev 4(3):313–323

    Article  CAS  Google Scholar 

  26. Kolodziej PA, Woychik N, Liao SM et al (1990) RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol 10(5):1915–1920

    Article  CAS  Google Scholar 

  27. Payne JM, Laybourn PJ, Dahmus ME (1989) The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxy-terminal domain of subunit IIa. J Biol Chem 264(33):19621–19629

    CAS  PubMed  Google Scholar 

  28. Corden JL (1990) Tails of RNA polymerase II. Trends Biochem Sci 15:383–387

    Article  CAS  Google Scholar 

  29. Haltiner MM, Smale ST, Tjian R (1986) Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol Cell Biol 6(1):227–235

    Article  CAS  Google Scholar 

  30. Murphy S, Di Liegro C, Melli M (1987) The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent on the presence of an upstream promoter. Cell 51(1):81–87

    Article  CAS  Google Scholar 

  31. Buratowski S, Hahn S, Guarente L et al (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56(4):549–561

    Article  CAS  Google Scholar 

  32. Flores O, Lu H, Killeen M et al (1991) The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc Natl Acad Sci USA 88(22):9999–10003

    Article  CAS  Google Scholar 

  33. Goodrich JA, Tjian R (1994) Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77(1):145–156

    Article  CAS  Google Scholar 

  34. Allison LA (2012) Fundamental molecular biology, 2nd edn. Wiley, Hoboken

    Google Scholar 

  35. Chen H, Zhang J, Yuan G et al (2014) Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome. PLoS One 9(6):e99314

    Article  Google Scholar 

  36. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  37. Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  CAS  Google Scholar 

  38. Flynn RA, Martin L, Spitale RC et al (2015) Dissecting noncoding and pathogen RNA-protein interactomes. RNA 21(1):135–143

    Article  Google Scholar 

  39. Hamilton MJ, Young MD, Sauer S et al (2015) The interplay of long non-coding RNAs and MYC in cancer. AIIMS Biophys 2(4):794–809

    Article  CAS  Google Scholar 

  40. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  Google Scholar 

  41. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  Google Scholar 

  42. Kwek KY, Murphy S, Furger A et al (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9(11):800–805

    CAS  PubMed  Google Scholar 

  43. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  Google Scholar 

  44. Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453

    Article  Google Scholar 

  45. Begemann G, Paricio N, Artero R et al (1997) Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 124(21):4321–4331

    CAS  PubMed  Google Scholar 

  46. Barrette SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    Article  Google Scholar 

  47. Chao CW, Chan DC, Kuo A et al (1998) The mouse Formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med 4(9):614–628

    Article  CAS  Google Scholar 

  48. Gualandi F, Trabanelli C, Rimessi P et al (2003) Multiple exon skipping and RNA circularization contribute to the severe phenotypic expression of exon 5 dystrophin deletion. J Med Genet 40(8):e100

    Article  CAS  Google Scholar 

  49. Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    Article  Google Scholar 

  50. Du WW, Zhang C, Yang W et al (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191

    Article  Google Scholar 

  51. Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412

    Google Scholar 

  52. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  Google Scholar 

  53. Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  Google Scholar 

  54. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  Google Scholar 

  55. Schneider T, Hung LH, Schreiner S et al (2016) CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci Rep 6:3131

    Google Scholar 

  56. Peng L, Chen G, Zhu Z et al (2017) Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 8(1):808–818

    PubMed  Google Scholar 

  57. He S, Liu P, Jian Z et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-Jun pathway. Biochem Biophys Res Commun 441(4):763–769

    Article  CAS  Google Scholar 

  58. Schnall-Levin M, Rissland OS, Johnston WK et al (2011) Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Gnome Res 21(9):1395–1403

    Article  CAS  Google Scholar 

  59. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  Google Scholar 

  60. Wang K, Gan TY, Li N et al (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24(6):1111–1120

    Article  CAS  Google Scholar 

  61. Chen J, Cui L, Yuang J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1–2):126–132

    Article  CAS  Google Scholar 

  62. Zheng C, Niu H, Li M et al (2015) Cyclic RNA hsa-circ--000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep 12(5):6656–6662

    Article  CAS  Google Scholar 

  63. Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Supported by CSIR-Indian Institute of Chemical Biology internal support grant, Rumela Bose is a recipient of Shyama Prasad Mukherjee predoctoral fellowship from the Council of Scientific and Industrial Research, India.

Conflict of Interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupasri Ain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, R., Ain, R. (2018). Regulation of Transcription by Circular RNAs. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_7

Download citation

Publish with us

Policies and ethics