Skip to main content

Thermal Dynamics of Growing Bubble and Heat Transfer in Microgravity Pool Boiling

  • Chapter
  • First Online:
Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite

Part of the book series: Research for Development ((REDE))

Abstract

Boiling heat transfer realizes the high-performance heat exchange due to latent heat transportation, and then there are extensive industrial applications on Earth and many potential applications in space. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, and can also provide a means to study the actual influence of gravity on the pool boiling by comparing the results obtained from microgravity experiments with their counterparts in normal gravity. It will be conductive to revealing of the mechanism underlying the phenomenon, and then developing of more mechanistic models for the related applications both on Earth and in space. The present chapter summarize the up-to-date progress on the understanding of pool boiling phenomenon based on the knowledge obtained from microgravity experiments, focusing particularly on the thermal dynamics of growing bubble and heat transfer in microgravity pool boiling. The gravity scaling behavior, as well as the passive enhancement of heat transfer performance of nucleate pool boiling on flat plates by using micro-pin-finned surface, is presented and discussed in detail. Based on the outcome of the current trends in pool boiling research, some recommendations for future work are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Straub J (2001) Boiling heat transfer and bubble dynamics in microgravity. Adv Heat Transf 35:57–172

    Article  Google Scholar 

  2. Di Marco P (2003) Review of reduced gravity boiling heat transfer, European research. J Jpn Microgravity Appl 20(4):252–263

    Google Scholar 

  3. Ohta H (2003) Review of reduced gravity boiling heat transfer: Japanese research. J Jpn Soc Microgravity Appl 20(4):272–285

    Google Scholar 

  4. Kim J (2003) Review of reduced gravity boiling heat transfer, US research. J Jpn Microgravity Appl 20(4):264–271

    Google Scholar 

  5. Kim J (2009) Review of nucleate pool boiling bubble heat transfer mechanisms. Int J Multiphase Flow 35:1067–1076

    Article  Google Scholar 

  6. Zhao JF (2010) Two-phase flow and pool boiling heat transfer in microgravity. Int J Multiphase Flow 36(2):135–143

    Article  Google Scholar 

  7. Nukiyama S (1934) Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure, JSME J 37:367. See also: Int J Heat Mass Transf 9(12):1419 (1966); 27(7):959 (1984)

    Google Scholar 

  8. Carey VP (2008) Liquid vapor phase change phenomena. Taylor & Francis Group, New York, USA

    Google Scholar 

  9. Bankoff SG (1958) Entrapment of gas in the spreading of liquid over a rough surface. AIChE J 4:24–26

    Article  Google Scholar 

  10. Griffith P, Wallis JD (1960) The role of surface conditions in nucleate boiling. Chem Eng Prog Symp Ser 56(30):49–63

    Google Scholar 

  11. Hsu YY, Graham RW (1961) An analytical and experimental study of the thermal boundary layer and ebullition cycle in nucleate boiling, NASA TND-594. NASA Lewis Research Center, Cleveland, OH, USA

    Google Scholar 

  12. Hsu YY (1962) On the size range of active nucleation cavities in a heating surface. Trans ASME J Heat Transf 84:207–216

    Article  Google Scholar 

  13. Davis EJ, Anderson GH (1966) The incipience of nucleate boiling in forced convection flow. AIChE J 12(4):774–780

    Article  Google Scholar 

  14. Bergles AE, Rohsenow WM (1964) The determination forced-convection surface boiling heat transfer. J Heat Transf 86:365–372

    Article  Google Scholar 

  15. Sato T, Matsumura H (1964) On the condition of incipient subcooled boiling with forced convection. Bull JSME 7(26):392–398

    Article  Google Scholar 

  16. Wang CH, Dhir VK (1993) Effect of surface wettability on active nucleation site density during pool boiling of saturated water. J Heat Transf 115:659–669

    Article  Google Scholar 

  17. Zhao JF, Wan SX, Liu G, Yan N, Hu WR (2009) Subcooling pool boiling on thin wire in microgravity. Acta Astronaut 64(2–3):188–194

    Article  ADS  Google Scholar 

  18. Zhao JF, Li J, Yan N, Wang SF (2009) Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity. Microgravity Sci Tech 21(S1):S175–S183

    Article  ADS  Google Scholar 

  19. Zhang L, Li ZD, Li K, Li HX, Zhao JF (2014) Influence of heater thermal capacity on pool boiling heat transfer. J Comput Multiphase Flows 6(4):361–375

    Article  Google Scholar 

  20. Zhang L, Li ZD, Li K, Li HX, Zhao JF (2015) Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling. Appl Therm Eng 88:118–126

    Article  Google Scholar 

  21. Li ZD, Zhang L, Zhao JF, Li HX, Li K, Wu K (2015) Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72. Int J Heat Mass Transf 84:409–418

    Article  Google Scholar 

  22. Scriven LE (1959) On the dynamics of bubble growth. Chem Eng Sci Genie Chim 10:1–13

    Article  Google Scholar 

  23. Plesset MS, Zwick SA (1954) Growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dergarabedian P (1953) The rate of growth of vapor bubbles in superheated water. ASME J Appl Mech 20:537–545

    Google Scholar 

  25. Mikic BB, Rohsenow WM, Griffith D (1970) On bubble growth rates. Int J Heat Mass Transf 13:657–666

    Article  Google Scholar 

  26. Wan SX, Zhao JF, Liu G (2009) Dynamics of discrete bubble in nucleate pool boiling on thin wires in microgravity. J Therm Sci 18(1):13–19

    Article  Google Scholar 

  27. Li J, Zhao JF, Xue YF, Wei JJ, Du WF, Guo D (2012) Experimental study on growth of an isolated bubble utilizing short-term microgravity drop tower. Chin J Space Sci 32(4):544–549

    Google Scholar 

  28. Liu P, Wu K, Du W, Zhao JF, Li HX, Li K (2018) Experimental study on bubble behaviors in microgravity pool boiling. Chin J Space Sci 38(2):221–226

    Google Scholar 

  29. Wu K, Liu P, Du WF, Zhao JF, Li HX, Li K (2018) Heat transfer and bubble dynamical behavior during single bubble pool boiling in microgravity. In: Proceedings of the 16th international heat transfer conference (IHTC-16), 10–15 August 2018, Beijing, China, Paper no. IHTC16-22294

    Google Scholar 

  30. Snyder NR, Edwards DK (1956) Summary of conference on bubble dynamics and boiling heat transfer. Memo 20–137, Jet Propulsion Laboratory, Pasadena, CA, USA, pp 14–15

    Google Scholar 

  31. Moore FD, Mesler RB (1961) The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AIChE J 7:620–624

    Article  Google Scholar 

  32. Cooper MG, Lloyd AJP (1969) The microlayer in nucleate pool boiling. Int J Heat Mass Transf 12:915–933

    Article  Google Scholar 

  33. Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. Heat Mass Transf 30:119–125

    Google Scholar 

  34. Fischer S, Gambaryan-Roisman T, Stephan P (2015) On the development of a thin evaporating liquid film at a receding liquid/vapour-interface. Int J Heat Mass Transf 88:346–356

    Article  Google Scholar 

  35. Urbano A, Tanguy S, Huber G, Colin C (2018) Direct numerical simulation of nucleate boiling in micro-layer regime. Int J Heat Mass Transf 123:1128–1137

    Article  Google Scholar 

  36. Guion A, Afkhami S, Zaleski S, Buongiorno J (2018) Simulations of microlayer formation in nucleate boiling. Int J Heat Mass Transf 127:1271–1284

    Article  Google Scholar 

  37. Hänsch S, Walker S (2019) Microlayer formation and depletion beneath growing steam bubbles. Int J Multiphase Flow 111:241–263

    Article  MathSciNet  Google Scholar 

  38. Fritz W (1935) Maximum volume of vapor bubbles. Physik Zeitschr 36:379–384

    Google Scholar 

  39. Zhao JF, Liu G, Wan SX, Yan N (2008) Bubble dynamics in nucleate pool boiling on thin wires in microgravity. Microgravity Sci Technol 20(2):81–89

    Article  ADS  Google Scholar 

  40. Zhao JF, Liu G, Li ZD, Wan SX (2007) Bubble behaviors in nucleate pool boiling on thin wires in microgravity. In: 6th international conference multiphase flow, 9–13 July 2007, Leipzig, Germany

    Google Scholar 

  41. Malenkov IG (1971) Detachment frequency as a function of size of vapor bubbles. Translated Inzh Fiz Zhur 20:99

    Google Scholar 

  42. Siegel R, Keshock EG (1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water. AIChE J 10:507–517

    Article  Google Scholar 

  43. Di Marco P, Grassi W (2000) Pool boiling in microgravity: assessed results and open issues. In: Proceedings of the 3rd European thermal sciences conference

    Google Scholar 

  44. Zhao JF, Li ZD, Zhang L (2012) Numerical simulation on single bubble pool boiling in different gravity conditions. Chin J Space Sci 32(4):537–543

    Google Scholar 

  45. Zuber N (1963) Nucleate boiling: the region of isolated bubbles and the similarity with natural convection. Int J Heat Mass Transf 6(1):53–79

    Article  MathSciNet  Google Scholar 

  46. Hu WR, Zhao JF, Long M, Zhang XW, Liu QS, Hou MY, Kang Q, Wang YR, Xu SH, Kong WJ, Zhang H, Wang SF, Sun YQ, Hang HY, Huang YP, Cai WM, Zhao Y, Dai JW, Zheng HQ, Duan EK, Wang JF (2014) Space program SJ-10 of microgravity research. Microgravity Sci Technol 26:159–169

    Article  ADS  Google Scholar 

  47. Wu K, Li ZL, Zhao JF, Li HX, Li K (2016) Partial nucleate pool boiling at low heat flux: preliminary ground test for SOBER-SJ10. Microgravity Sci Technol 28:165–178

    Article  ADS  Google Scholar 

  48. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. Trans ASME 74:969–976

    Google Scholar 

  49. Kutateladze SS (1948) On the transition to film boiling under natural convection. Kotloturbostroenie 3:10–12

    Google Scholar 

  50. Zuber N (1959) Hydrodynamic aspects of boiling heat transfer. PhD thesis, University of California, Los Angeles, CA, USA

    Google Scholar 

  51. Raj R, Kim J, McQuillen J (2009) Subcooled pool boiling in variable gravity environments. J Heat Transf 131(9):09152

    Article  Google Scholar 

  52. Raj R, Kim J, McQuillen J (2010) Gravity scaling parameter for pool boiling heat transfer. ASME Trans J Heat Transf 132(9):091502

    Article  Google Scholar 

  53. Raj R, Kim J, McQuillen J (2012) On the scaling of pool boiling heat flux with gravity and heater size. ASME Trans J Heat Transf 134(1):0115021

    Article  Google Scholar 

  54. Raj R, Kim J, McQuillen J (2012) Pool boiling heat transfer on the international space station: experimental results and model verification. J Heat Transf 134:10154

    Google Scholar 

  55. Wang XL, Zhang YH, Qi BJ, Zhao JF, Wei JJ (2016) Experimental study of the heater size effect on subcooled pool boiling heat transfer of FC-72 in microgravity. Exp Therm Fluid Sci 76:275–286

    Article  Google Scholar 

  56. Zhao JF, Wei JJ, Li HX (2017) Influences of gravity on bubble dynamics and heat transfer in nucleate pool boiling. In: Keynote lecture. 2nd international conference of interfacial phenomena & heat transfer (IPHT 2017), 7–10 July 2017, Xi’an, China

    Google Scholar 

  57. Ma X, Cheng P, Gong S, Quan X (2017) Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions. Int J Heat Mass Transf 114:453–457

    Article  Google Scholar 

  58. Feng Y, Li HX, Guo KK, Zhao JF, Wang T (2018) Numerical study of single bubble growth on and departure from a horizontal superheated wall by three-dimensional lattice Boltzmann method. Microgravity Sci Technol 30(6):761–773

    Article  ADS  Google Scholar 

  59. Xue YF, Zhao JF, Wei JJ, Li J, Guo D, Wan SX (2011) Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity. Microgravity Sci Technol 23(S1):S75–S85

    Article  ADS  Google Scholar 

  60. Lienhard JH, Dhir VK (1973) Hydrodynamic prediction of peak pool boiling heat fluxes from finite bodies. J Heat Transf 95:152–158

    Article  Google Scholar 

  61. Di Marco P, Grassi W (1999) About the scaling of critical heat flux with gravity acceleration in pool boiling. In: Proceedings of XVII UIT national heat transfer conference, Ferrara, pp 139–149

    Google Scholar 

  62. Zhao JF, Lu YH, Du WF, Li ZD (2015) Revisit on the scaling of the critical heat flux on cylinders. Interfacial Phenomena Heat Transf 3(1):69–83

    Article  Google Scholar 

  63. Sitter JS, Snyder TJ, Chung JN, Marston PL (1998) Acoustic field interaction with a boiling system under terrestrial gravity and microgravity. J Acoust Soc Am 104:2561–2569

    Article  ADS  Google Scholar 

  64. Sitter JS, Snyder TJ, Chung JN, Marston PL (1998) Terrestrial and microgravity pool boiling heat transfer from a wire in an acoustic field. Int J Heat Mass Transf 41:2143–2155

    Article  Google Scholar 

  65. Moehrle RE, Chung JN (2016) Pool boiling heat transfer driven by an acoustic standing wave in terrestrial gravity and microgravity. Int J Heat Mass Transf 93:322–336

    Article  Google Scholar 

  66. Snyder TJ, Chung JN (2000) Terrestrial and microgravity boiling heat transfer in a dielectrophoretic force field. Int J Heat Mass Transf 43(9):1547–1562

    Article  Google Scholar 

  67. Di Marco P, Grassi W (2002) Motivation and results of a long-term research on pool boiling heat transfer in low gravity. Int J Therm Sci 41(7):567–585

    Article  Google Scholar 

  68. Di Marco P, Grassi W (2009) Effect of force fields on pool boiling flow patterns in normal and reduced gravity. Heat Mass Transf 45(7):959–966

    Article  ADS  Google Scholar 

  69. Di Marco P, Grassi W (2011) Effects of external electric field on pool boiling: comparison of terrestrial and microgravity data in the ARIEL experiment. Exp Therm Fluid Sci 35(5):780–787

    Article  Google Scholar 

  70. Iacona E, Herman C, Chang SN, Liu Z (2006) Electric field effect on bubble detachment in reduced gravity environment. Exp Therm Fluid Sci 31(2):121–126

    Article  Google Scholar 

  71. Schweizer N, Di Marco P, Stephan P (2013) Investigation of wall temperature and heat flux distribution during nucleate boiling in the presence of an electric field and in variable gravity. Exp Therm Fluid Sci 44:419–430

    Article  Google Scholar 

  72. Munasinghe T (2009) Studying the characteristics of bubble motion in pool boiling in microgravity conditions under the influence of a magnetic field. In: Proceedings of the 4th international conference on recent advances in space technologies, 11–13 June 2009, Istanbul, Turkey, pp 700–703

    Google Scholar 

  73. Wei JJ, Zhao JF, Yuan MZ, Xue YF (2009) Boiling heat transfer enhancement by using micro-pin-finned surface for electronics cooling. Microgravity Sci Technol 21(S1):S159–S173

    Article  ADS  Google Scholar 

  74. Wei JJ, Xue YF, Zhao JF, Li J (2011) Bubble behavior and heat transfer of nucleate pool boiling on micro-pin-finned surface in microgravity. Chin Phy Lett 28(1):016401

    Article  ADS  Google Scholar 

  75. Xue YF, Zhao JF, Wei JJ, Zhang YH, Qi BJ (2013) Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity. Int J Heat Mass Transf 63:425–433

    Article  Google Scholar 

  76. Zhang YH, Wei JJ, Xue YF, Kong X, Zhao JF (2014) Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity. Appl Therm Eng 70:172–182

    Article  Google Scholar 

  77. Zhang YH, Zhao JF, Wei JJ, Xue YF (2017) Nucleate pool boiling heat transfer on a micro-pin-finned surface in short-term microgravity. Heat Transf Eng 38(6):594–610

    Article  ADS  Google Scholar 

  78. Qi BJ, Wei JJ, Wang XL, Zhao JF (2017) Influences of wake-effects on bubble dynamics by utilizing micro-pin-finned surfaces under microgravity. Appl Therm Eng 113:1332–1344

    Article  Google Scholar 

  79. Zhang YH, Liu B, Zhao JF, Deng YP, Wei JJ (2018) Experimental study of subcooled flow boiling heat transfer on micro-pin-finned surfaces in short-term microgravity. Exp Therm Fluid Sci 97:417–430

    Article  Google Scholar 

Download references

Acknowledgements

The studies presented here were supported financially by the National Natural Science Foundation of China (U1738105, 11802314, 11672311, 11372327, 11402273, 10972225, 10432060, 51636006, 51611130060), and the Chinese Academy of Sciences (QYZDY-SSW-JSC040, XDA04020404, XDA04020202-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, W., Zhao, J., Li, H., Zhang, Y., Wei, J., Li, K. (2019). Thermal Dynamics of Growing Bubble and Heat Transfer in Microgravity Pool Boiling. In: Hu, W., Kang, Q. (eds) Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-1340-0_4

Download citation

Publish with us

Policies and ethics