Skip to main content

Part of the book series: Research for Development ((REDE))

  • 560 Accesses

Abstract

Many researchers around the world have lots of interests in discovering what and how may happen when materials processing is conducted in space. Usually, for the investigation of space material sciences, experimental facilities are important and necessary. Up to now, more than one hundred of material experimental facilities have been developed in the world. They include many high-temperature heating furnaces, in situ observation and diagnosis equipments, as well as facilities for crystal growth from water solution in microgravity. Some of them are prepared by international cooperation among two or even more countries. In this chapter, we will give a brief summary for the material processing facilities in the world. The facilities developed in the recent ten years serving on International Space Station (ISS) are particularly focused. Furthermore, some material experimental devices built by China which have served in Chinese recoverable satellites and man-made space crafts are also discussed emphatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barta C, Triska A, Trnka J et al (1984) Experimental facility for materials research in space CSK-1. Adv Space Res 4:95–98

    Article  ADS  Google Scholar 

  2. Barmin I, Bryukhanov N, Egorov A et al (2002) Using the progress transport spacecraft in structure of the international space station for realization of scientific experiments under microgravity conditions. Acta Astronaut 51:255–259

    Article  ADS  Google Scholar 

  3. Stenzel Ch, Dold P, Benz KW (1996) Magnetic damping array implemented into a space-compatible multizone furnace for semiconductor crystal growth. Rev Sci Instrum 67:1985–1988

    Article  ADS  Google Scholar 

  4. Bernard Z, Rainer K, Judith R (2003) Cooperative research in microgravity sciences during the French manned MIR missions. Acta Astronaut 53:963–970

    Article  Google Scholar 

  5. Ostrogorsky AG, Marin C, Churilov A et al (2008) Reproducible Te-doped InSb experiments in microgravity science glovebox at the International Space Station. J Cryst Growth 310:364–371

    Article  ADS  Google Scholar 

  6. Cobb SD, SzofranF R, Schaefer DA (1999) Preliminary concepts for the materials science research facility on the International Space Station. AIP Conf Proc 458:459–464

    Article  ADS  Google Scholar 

  7. Carswell W, Kroeger F, Hammod M (2003) QMI: a furnace for metals and alloys processing on the International Space Station. IEEE Aerosp Conf Proc 1:65–74

    Google Scholar 

  8. Myscha RC, William EC, Jeff F et al (2000) Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). AIP Conf Proc 504:493–498

    Article  Google Scholar 

  9. Yoda S, Shibukawa K, Murakami K et al (1992) The development of isothermal furnace (IF) and gradient heating furnace (GHF). In: International symposium of space technology and science, 18th, Kagoshima, Japan, 17–22 May 1992, vol 1 & 2, pp 2211–2216

    Google Scholar 

  10. Kaoruho S, Midori M, Govindasamy R et al (2014) Thermal properties of molten InSb, GaSb, and InxGa1−xSb alloy semiconductor materials in preparation for crystal growth experiments on the international space station. Adv Space Res 53:689–695

    Article  Google Scholar 

  11. Kinoshita K, Arai Y, Inatomi Y et al (2014) Growth of a Si0.50Ge0.50 crystal by the traveling liquidus-zone (TLZ) method in microgravity. J Cryst Growth 388:12–16

    Google Scholar 

  12. Liu Y, Ai F, Feng CD et al (2006) A new kind of multi-task materials processing facility for space applications. Space Technol 26:87–90

    Google Scholar 

  13. Wang JC, Liu Y, Ai F et al (2002) The DGW-I furnace a materials processing facility in “SZ-2” spacecraft. Chin J Space Sci 22(supplement):154–158

    Google Scholar 

  14. Zhang XW, Yin ZG, Pan XH (2016) Crystal growth form melts: materials science program in the SJ10-recoverable scientific experiment satellite. Physics 45:213–218

    Google Scholar 

  15. Richard NG, Paul L, Guy S et al (2008) Materials research conducted aboard the International Space Station: facilities overview, operational procedures, and experimental outcomes. Acta Astronaut 62:491–498

    Article  Google Scholar 

  16. Richard NG, Lucien NB, Amrutur VA (2012) Disruption of an aligned dendritic network by bubbles during re-melting in a microgravity environment. Microgravity Sci Technol 24:93–101

    Article  Google Scholar 

  17. Izumi Y, Katsuo T, Tomoya Y et al (2013) Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Rev Sci Instrum 84:103707 (8 p)

    Google Scholar 

  18. Laubier D, Martin B, Durieux A (2004) The optical diagnostics of DECLIC. In: Proceedings of the 5th international conference on space optics (ICSO 2004), 30 March–2 April 2004, Toulouse, France, pp 441–446

    Google Scholar 

  19. Jin WQ, Chen JY, Li WS et al (1993) Development of optical system for high temperature in situ observation of oxides crystal growth. Ferroelectrics 142:13–18

    Article  Google Scholar 

  20. Jin WQ, Pan ZL, Cai LX et al (1999) The studies of KNbO3 cellular growth in high-temperature solution at microgravity. J Cryst Growth 206:81–87

    Article  ADS  Google Scholar 

  21. Hu SX, Li XL, Sun ZB et al (2014) Study on structure transformation of colloidal crystal growth in space. Manned Spacefl 20:261–266

    Google Scholar 

  22. Duan L, Kang Q, Sun ZW et al (2008) The real-time Mach-Zehnder interferometer used in space experiment. Microgravity Sci Technol 20:91–98

    Article  ADS  Google Scholar 

  23. Nguyen-Thi H, Reinhart G, Salloum Abou Jaoude G et al (2013) XRMON-GF: a novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions. J Cryst Growth 374:23–30

    Article  ADS  Google Scholar 

  24. Nguyen-Thi H, Bogno A, Reinhart G et al (2011) Investigation of gravity effects on solidification of binary alloys with in situ X-ray radiography on earth and in microgravity environment. J Phys: Conf Ser 327:012012 (11 p)

    Google Scholar 

  25. Garandet JP, Boutet G, Lehmann P et al (2005) Morphological stability of a solid–liquid interface and cellular growth: Insights from thermoelectric measurements in microgravity experiments. J Cryst Growth 279:195–205

    Article  ADS  Google Scholar 

  26. Pissard JP, Le GG, Salvi C et al (2002) See beck and resistance diagnostics in the ESA MSL facility for the ISS. Acra Astronautica 51:1–9

    Article  Google Scholar 

  27. Tanja D, Michael R, Wolfgang MH et al (2004) Scanning probe microscopy experiments in microgravity. Appl Surf Sci 238:3–8

    Article  Google Scholar 

  28. Masaki T, Itami T, Kuribayashi K et al (1996) The experimental apparatus for electrical resistivity measurements of liquid metals and alloys under microgravity due to the launch of a rocket. Rev Sci Instrum 67:2325–2331

    Article  ADS  Google Scholar 

  29. Chen WC, Li CR, Liu DD (2003) Post-research on α-LiIO3 crystal growth in space. J Cryst Growth 254:169–175

    Article  ADS  Google Scholar 

  30. Nurcan B, Joseph H, Robert A M et al (2000) A low temperature furnace for solution crystal growth on the International Space Station. In: Genk MS (ed) Space technology and applications international forum, pp 499–504

    Google Scholar 

  31. Paul-Francois P, Takehiko I, Shinichi Y (2008) Experiments in materials science on the ground and in reduced gravity using electrostatic levitators. Adv Space Res 41:2118–2125

    Article  ADS  Google Scholar 

  32. Takehiko I, Junpei T O, Yuki W et al (2015) Thermophysical property measurements of oxide melts at high temperature by electrostatic levitation furnace on ISS. Int J Microgravity Sci Appl 32: 320410 (4 p)

    Google Scholar 

  33. Hofmann P, Seurig R, Stettner A et al (2008) Complex plasma research on ISS: PK-3 Plus, PK-4 and impact/plasma lab. Acta Astronaut 63:53–60

    Article  ADS  Google Scholar 

  34. Alex I (2001) Advanced thin-film materials processing in the ultra-vacuum of space. Acta Astronaut 48:115–120

    Article  ADS  Google Scholar 

  35. Debe MK, Poirier RJ, Schroder FS et al (1990) Design and performance of a vapor transport cell for operation onboard the Space Shuttle Orbiter. Rev Sci Instrum 61:865–870

    Article  ADS  Google Scholar 

  36. Debe MK (1986) Industrial materials processing experiments on board the Space Shuttle Orbiter. J Vac Sci Technol A4:273–280

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhong Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, X., Ai, F., Liu, Y. (2019). Material Processing Facilities in Space. In: Hu, W., Kang, Q. (eds) Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-1340-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1340-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1339-4

  • Online ISBN: 978-981-13-1340-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics