Skip to main content

Densification of Agricultural Wastes and Forest Residues: A Review on Influential Parameters and Treatments

  • Chapter
  • First Online:
Recent Advancements in Biofuels and Bioenergy Utilization

Abstract

Biomass densification is an effective process to overcome specific biomass application limitations such as low density, nonuniform particle size and shape, and cost of transportation. Lignocellulosic materials (e.g. agricultural wastes and forest residues) are the main precursors used for pelletization. The quality of fuel pellets is determined based on their mechanical strength, hydrophobicity, heating value, and density. These properties are influential in handling, transportation, storage, and fuel applications of this product. There are several parameters affecting the quality of fuel pellets: precursor chemical structure, pelletization operating conditions, precursor pre-treatments, and pellet posttreatments. Formation of a strong binding structure in biomass pellet depends on the internal structure of precursors (e.g. lignin, cellulose, hemicellulose, extractives, moisture), particle size range of precursor, additives (e.g. binders, lubricants, plasticizers, and moisture), and pelletization operating conditions. Pre-treatments such as steam explosion and torrefaction can be used to facilitate the pelletization process or improve some precursor properties such as energy content or hydrophobicity. Post-treatments such as coating and torrefaction are applied to biomass pellets to improve their hydrophobicity or heating value. This chapter provides an overview of the parameters affecting the quality of biomass fuel pellets, biomass pre-treatments, and pellet post-treatments, as well as safety aspects related to transportation and storage of fuel pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa P, Tabil L, Schoenau G, Opoku A (2010) Pelleting characteristics of selected biomass with and without steam explosion pretreatment. Int J Agric & Biol Eng 3:62–79

    CAS  Google Scholar 

  • Angles MN, Ferrandob F, Farriola X, Salvad J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21:211–224

    Article  CAS  Google Scholar 

  • Arzola N, Gómez A, Rincón S (2012) The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters. Ing Investig 32:24–29

    Google Scholar 

  • Bach QV, Tran KQ, Khalil RA, Skreiberg Ø, Seisenbaeva G (2013) Comparative assessment of wet torrefaction. Energy Fuel 27:6743–6753

    Article  CAS  Google Scholar 

  • Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fired power stations “biocoal”, Report ECN-C-05-013. ECN, Petten

    Google Scholar 

  • Biswas AK, Yang W, Blasiak W (2011) Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Process Technol 92:1711–1717

    Article  CAS  Google Scholar 

  • Bowyer JL, Stockmann VE (2001) Agricultural residues: an exciting bio-based raw material for the global panel industry. Forest Prod J 51:10–21

    Google Scholar 

  • Cao L, Yuan X, Li H, Li C, Xiao Z, Jiang L, Huang B, Xiao Z, Chen X, Wang H, Zeng G (2015) Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets. Bioresour Technol 185:254–262

    Article  CAS  Google Scholar 

  • Carone MT, Pantaleo A, Pellerano A (2011) Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 35:402–410

    Article  Google Scholar 

  • Chen P, Kuo C (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811

    Article  CAS  Google Scholar 

  • Clarke S, Preto F (2011) Biomass densification for energy production, Factsheet order no. 11-035. Ontario Ministry of Agriculture, Food and Rural Affairs, Ontario

    Google Scholar 

  • Craven JM, Swithenbank J, Sharifi VN, Peralta-Solorio D, Kelsall G, Sage P (2015) Hydrophobic coatings for moisture stable wood pellets. Biomass Bioenergy 80:278–285

    Article  CAS  Google Scholar 

  • Emadi B, Iroba KL, Tabil LG (2017) Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl Energy 198:312–319

    Article  CAS  Google Scholar 

  • Faborode MO (1989) Moisture effects in the compaction of fibrous agricultural residues. Biological Wastes 28:61–71

    Article  Google Scholar 

  • Filbakk T, Jirjis R, Nurmi J, Hoibo O (2011) Effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 35:3342–3349

    Article  CAS  Google Scholar 

  • Finell M, Arshadi M, Gref R, Scherzer T, Knolle W, Lestander T (2009) Laboratory-scale production of biofuel pellets from electron beam treated Scots pine (Pinus silvestris L.) sawdust. Radiat Phys Chem 78:281–287

    Article  CAS  Google Scholar 

  • Finney KN, Sharifi VN, Swithenbank J (2009) Fuel pelletization with a binder: part I-identification of a suitable binder for spent mushroom compost-coal tailing pellets. Energy Fuel 23:3195–3202

    Article  CAS  Google Scholar 

  • Ghiasi B, Kumar L, Furubayashi T, Lim CJ, Bi X, Kim CS, Sokhansanj S (2014) Densified biocoal from woodchips: is it better to do torrefaction before or after densification? Appl Energy 134:133–142

    Article  CAS  Google Scholar 

  • Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletization of herbaceous crops. Fuel 88:1491–1497

    Article  CAS  Google Scholar 

  • González-Peña MM, Hale MDC (2009) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: colour evolution and colour changes. Holzforschung 63:385–393

    Google Scholar 

  • Grover PD, Mishra SK (1996) Biomass briquetting: technology and practices. Regional wood energy development program in Asia, field document no. 46. Food and Agriculture Organization of the United Nations, Bangkok

    Google Scholar 

  • Haruna NY, Afzal MT (2016) Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Eng 148:93–99

    Article  Google Scholar 

  • Jackson J, Turner A, Mark T, Montross M (2016) Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Process Technol 148:43–49

    Article  CAS  Google Scholar 

  • Kaliyan N, Morey RV (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33:337–359

    Article  CAS  Google Scholar 

  • Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090

    Article  CAS  Google Scholar 

  • Kirsten C, Lenz V, Schroder HW, Repke JU (2016) Hay pellets d the influence of particle size reduction on their physical mechanical quality and energy demand during production. Fuel Process Technol 148:163–174

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar L, Koukoulas AA, Mani S, Satyavolu J (2017) Integrating torrefaction in the wood pellet industry: a critical review. Energy Fuel 31:37–54

    Article  CAS  Google Scholar 

  • Lam PS (2011) Steam explosion of biomass to produce wood pellets. PhD dissertation. University of British Columbia, Department of Chemical and Biological Engineering, Vancouver, BC, Canada

    Google Scholar 

  • Lam PS, Lam PY, Sokhansanj S, Lim CJ, Bi XT, Stephen JD, Pribowo A, Mabee WE (2015) Steam explosion of oil palm residues for the production of durable pellets. Appl Energy 141:160–166

    Article  CAS  Google Scholar 

  • Li Y, Liu H (2000) High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenergy 19:177–186

    Article  CAS  Google Scholar 

  • Li H, Liu X, Legros R, Bi XT, Lim C, Sokhansanj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 93:680–685

    Article  CAS  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006a) Specific energy requirement for compacting corn stover. Bioresour Technol 97:1420–1426

    Article  CAS  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006b) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30:648–654

    Article  Google Scholar 

  • Martín-Sampedro R, Eugenio ME, Revilla E, Martín JA, Villar JC (2011) Integration of the kraft pulping on a forest biorefinery by the addition of a steam explosion pretreatment. Bioresources 6:513

    Google Scholar 

  • Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H (2015) Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol 177:355–360

    Article  CAS  Google Scholar 

  • Miao Z, Grift TE, Hansen AC, Ting K (2013) Energy requirement for lignocellulosic feedstock densifications in relation to particle physical properties, preheating, and binding agents. Energy Fuel 27:588–595

    Article  CAS  Google Scholar 

  • Monedero E, Portero H, Lapuerta M (2015) Pellet blends of poplar and pine sawdust: effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Process Technol 132:15–23

    Article  CAS  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677

    Article  CAS  Google Scholar 

  • Nielsen NPK, Holm JK, Felby C (2009) Effect of fiber orientation on compression and frictional properties of sawdust particles in fuel pellet production. Energy Fuel 23:3211–3216

    Article  CAS  Google Scholar 

  • Ohliger A, Foerster M, Kneer R (2013) Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel 104:607–613

    Article  CAS  Google Scholar 

  • Peng JH, Bi HT, Sokhansanj S, Lim JC (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuel 26:3826–3839

    Article  CAS  Google Scholar 

  • Peng JH, Bi HT, Lim JC, Peng H, Kim CS, Jia D, Zuo H (2015) Sawdust as an effective binder for making torrefied pellets. Appl Energy 157:491–498

    Article  Google Scholar 

  • Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246–1253

    Article  CAS  Google Scholar 

  • Pickard GE, Roll WM, Ramser JH (1961) Fundamentals of hay wafering. Trans ASAE 4:65–68

    Article  Google Scholar 

  • Poddar S, Kamruzzaman M, Sujan SMA, Hossain M, Jamal MS, Gafur MA, Khanam M (2014) Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: higher heating value. Fuel 131:43–48

    Article  CAS  Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28–34

    Article  CAS  Google Scholar 

  • Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    Article  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  • Ren S, Lei H, Wang L, Bu Q, Wei Y, Liang J, Liu Y, Julson J, Chen S, Wu J, Ruan R (2012) Microwave torrefaction of douglas fir sawdust pellets. Energy Fuel 26:5936–5943

    Article  CAS  Google Scholar 

  • Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and palletization for fuel pellet production – a parametric study. Appl Energy 140:378–384

    Article  Google Scholar 

  • Rudolfsson M, Borén E, Pommer L, Nordin A, Lestander TA (2017) Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy 191:414–424

    Article  CAS  Google Scholar 

  • Rumpf H (1962) The strength of granules and agglomerates. In: Knepper WA (ed) Agglomeration. Interscience, New York, pp 379–418

    Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289

    Article  CAS  Google Scholar 

  • Samuelsson R, Larsson SH, Thyrel M, Lestander TA (2012) Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Appl Energy 99:109–115

    Article  Google Scholar 

  • Shang L, Nielsen NPK, Dahl J, Stelte W, Ahrenfeldt J, Holm JK, Thomsen T, Henriksen UB (2012) Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Process Technol 101:23–28

    Article  CAS  Google Scholar 

  • Si Y, Hu J, Wang X, Yang H, Chen Y, Shao J, Chen H (2016) Effect of carboxymethyl cellulose binder on the quality of biomass pellets. Energy Fuel 30:5799–5808

    Article  CAS  Google Scholar 

  • Sokhansanj S, Mani S, Stumborg M, Samson R, Fenton J (2006) Production and distribution of cereal straw on the Canadian prairies. Can Biosyst Eng 48:3.39–3.46

    Google Scholar 

  • Soleimani M, Tabil XL, Grewal R, Tabil LG (2017) Carbohydrates as binders in biomass densification for biochemical and thermochemical processes. Fuel 193:134–141

    Article  CAS  Google Scholar 

  • Stelte W (2012) Guideline: storage and handling of wood pellets. Resultat Kontrakt (RK) report. Danish Technological Institute. www.teknologisk.dk

  • Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011a) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90:3285–3290

    Article  CAS  Google Scholar 

  • Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011b) A study of bonding and failure mechanisms in fuel pellets made from different biomass resources. Biomass Bioenergy 35:910–918

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Thomas M, van Vliet T, van der Poel AFB (1998) Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Anim Feed Sci Technol 70:59–78

    Article  CAS  Google Scholar 

  • Thostenson T, Chou W (1999) Microwave processing: fundamentals and applications. Compos Part A 30:1055–1071

    Article  Google Scholar 

  • Tilay A, Azargohar R, Drisdelle M, Dalai AK, Kozinski JA (2015) Canola meal moisture-resistant fuel pellets: studyon the effects of process variables and additives on the pellet quality and compression characteristics. J Ind Crop Prod 63:337–348

    Article  CAS  Google Scholar 

  • Tooyserkani Z, Sokhansanj S, Bi X, Lim CJ, Saddler J, Lau A, Melin S, Lam PS, Kumar L (2012) Effect of steam treatment on pellet strength and the energy input in pelleting of softwood particles. ASABE 55:2265–2272

    Article  Google Scholar 

  • Torres W, Pansare SS, Goodwin JG Jr (2007) Hot gas removal of tars, ammonia, and hydrogen sulphide from biomass gasification gas. Catal Rev 49:407–456

    Article  CAS  Google Scholar 

  • Tumuluru JS (2014) Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst Eng:11944–11957

    Google Scholar 

  • Tumuluru JS, Christopher TW, Kevin LK, Hess JR (2010) A technical review on biomass processing: densification, preprocessing, modeling and optimization. ASABE Meeting Presentation Paper Number: 1009401

    Google Scholar 

  • Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5:683–707

    Article  CAS  Google Scholar 

  • Turner R (1995) Bottomline in feed processing: achieving optimum pellet quality. Feed Manage 46:30–33

    Google Scholar 

  • van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762

    Google Scholar 

  • Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, Sokhansanj S (2013) Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 127:318–325

    Article  CAS  Google Scholar 

  • Wang Y, Wu K, Sun Y (2018) Effects of raw material particle size on the briquetting process of rice straw. J Energy Inst 91:153–162

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Zandersons J, Gravitis J, Zhurinsh A, Kokorevics A, Kallavus U, Suzuki CK (2004) Carbon materials obtained from self-binding sugar cane bagasse and deciduous wood residues plastics. Biomass Bioenergy 26:345–360

    Article  CAS  Google Scholar 

  • Zeeuwen P (2012) Hazardous material that lead to dust explosions. Canadian Biomass Magazine. https://www.canadianbiomassmagazine.ca/safety-fire/hazardous-material-6351. Accessed 8 Sept 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azargohar, R., Nanda, S., Dalai, A.K. (2018). Densification of Agricultural Wastes and Forest Residues: A Review on Influential Parameters and Treatments. In: Sarangi, P., Nanda, S., Mohanty, P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_2

Download citation

Publish with us

Policies and ethics