Skip to main content

Development of Parsimonious Orthonormal Basis Function Models Using Particle Swarm Optimisation

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume I

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 798))

  • 682 Accesses

Abstract

Orthonormal basis function (OBF) models have several advantages and recently find applications in model-based and fault tolerant controllers, due to its computational efficiency, consistency, linearity and parsimonious nature of parameters. OBF models use a priori knowledge of system dynamics in the form of dominant poles to reduce the model order. The OBF model accuracy improves and becomes more parsimonious as the estimate of poles used in the OBF filters is more closer to the system dynamics. The optimal class of OBF model is also selected from the knowledge of nature of dominant poles. The available methods are mainly based on simple step response or graphical analysis. In this paper, an optimisation-based approach is proposed and then validated for different processes for estimating the dominant poles of the process from a broad input–output identification data. The method also discussed an iterative approach to separately compute process time delay and further improve the estimation of dominant poles. It can be further extended to develop the approximate process first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. TĂłth, R.: Modeling and Identification of Linear Parameter-Varying Systems, vol. 403. Springer, Berlin (2010)

    Chapter  Google Scholar 

  2. Tufa, L.D., Ramasamy, M., Mahadzir, S.: System Identification Using Orthonormal Basis Filters. INTECH Open Access Publisher (2012)

    Google Scholar 

  3. Heuberger, P.S., Van den Hof, P.M.: Orttool-a matlabz toolbox for system identification with generalized orthonormal basis functionsx (2017)

    Google Scholar 

  4. Van den Hof, P., Ninness, B.: System Identification with Generalized Orthonormal Basis Functions, pp. 61–102. Springer, London (2005)

    Google Scholar 

  5. Tufa, L.D., Ramasamy, M., Shuhaimi, M.: Improved method for development of parsimonious orthonormal basis filter models. J. Process Control 21, 36–45 (2011)

    Article  Google Scholar 

  6. Patwardhan, S.C., Shah, S.L.: From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers. J. Process Control 15, 819–835 (2005)

    Article  Google Scholar 

  7. Patwardhan, S.C., Manuja, S., Narasimhan, S., Shah, S.L.: From data to diagnosis and control using generalized orthonormal basis filters. Part II: Model predictive and fault tolerant control. J. Process Control 16, 157–175 (2006)

    Article  Google Scholar 

  8. Reddy, R., Saha, P.: Modelling and control of nonlinear resonating processes: part I system identification using orthogonal basis function. Int. J. Dyn. Control 5, 1222–1236 (2017)

    Article  MathSciNet  Google Scholar 

  9. Morinelly Sanchez, J.E.: Adaptive Model Predictive Control with Generalized Orthonormal Basis Functions (2017)

    Google Scholar 

  10. Kumar, K., Patwardhan, S.C., Noronha, S.: An adaptive dual mpc scheme based on output error models parameterized using generalized orthonormal basis filters. IFAC-PapersOnLine 50, 9077–9082 (2017)

    Article  Google Scholar 

  11. Ninness, B., Gustafsson, F.: A unifying construction of orthonormal bases for system identification. IEEE Trans. Autom. Control 42, 515–521 (1997)

    Article  MathSciNet  Google Scholar 

  12. Yuan, J.: Adaptive laguerre filters for active noise control. Appl. Acoust. 68, 86–96 (2007)

    Article  Google Scholar 

  13. Ninness, B., Hjalmarsson, H., Gustafsson, F.: Generalized Fourier and Toeplitz results for rational orthonormal bases. SIAM J. Control Optim. 37, 429–460 (1999)

    Article  MathSciNet  Google Scholar 

  14. Heuberger, P.S., van den Hof, P.M., Wahlberg, B.: Modelling and Identification with Rational Orthogonal Basis Functions. Springer Science & Business Media (2005)

    Google Scholar 

  15. Hof, P.M.V.D., Heuberger, P.S., Bokor, J.: System identification with generalized orthonormal basis functions. Automatica 31, 1821–1834 (1995). Trends in System Identification

    Article  MathSciNet  Google Scholar 

  16. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)

    Google Scholar 

  17. Rezaee Jordehi, A.: Particle swarm optimisation for dynamic optimisation problems: a review. Neural Comput. Appl. 25, 1507–1516 (2014)

    Article  Google Scholar 

  18. Du, K.L., Swamy, M.N.S.: Particle Swarm Optimization, pp. 153–173. Springer International Publishing, Cham (2016)

    Google Scholar 

  19. Mazhoud, I., Hadj-Hamou, K., Bigeon, J., Joyeux, P.: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism. Eng. Appl. Artif. Intell. 26, 1263–1273 (2013)

    Article  Google Scholar 

  20. Parsopoulos, K.E., Vrahatis, M.N., et al.: Particle swarm optimization method for constrained optimization problems. Intell. Technol.-Theor. Appl.: New Trends Intell. Technol. 76, 214–220 (2002)

    MATH  Google Scholar 

  21. Li, X., Tian, P., Kong, M.: A Novel Particle Swarm Optimization for Constrained Optimization Problems, pp. 1305–1310. Springer, Berlin, Heidelberg (2005)

    MATH  Google Scholar 

  22. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1, 173–194 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalu Seban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seban, L., Roy, B.K. (2019). Development of Parsimonious Orthonormal Basis Function Models Using Particle Swarm Optimisation. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-13-1132-1_43

Download citation

Publish with us

Policies and ethics