Skip to main content

Molecular Mechanisms of Neurodegeneration: Insights from the Studies of Genetic Model of Parkinson’s Disease

  • Chapter
  • First Online:
Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

Parkinson’s disease (PD), a neurodegenerative movement disorder, affects 1% of the population over the age of 60. Since the discovery of various genes associated with PD, there has been tremendous exploration on the molecular mechanisms involved in the pathogenesis of PD. Investigations on how these mutations cause PD and identification of new genetic risk factors have broadened our vision on PD. Autosomal dominant (SNCA, LRRK2) and recessive mutations (Parkin, PINK1, DJ-1) associated with PD have been explored in various invertebrate (Drosophila, C. elegans) and vertebrate (zebrafish, mouse, rat) genetic models. Although there is no direct evidence that these genes play a role in sporadic PD, a genetic contribution to the disease development cannot be neglected. Hence these studies provide cues for the mechanisms that contribute to sporadic PD, especially, in understanding the mechanisms of nigral degeneration and Lewy body formation that are hallmarks of PD pathology. This chapter also reviews different pathways affected by each of these genetic factors that contribute to the big picture of the molecular mechanisms of PD pathogenesis. However, there is a need to improve current genetic models of PD which will provide platforms for testing novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahn S. Parkinson’s disease: 10 years of progress, 1997-2007. Mov Disord. 2010;25(Suppl 1):S2–14.

    Article  PubMed  Google Scholar 

  2. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a008888.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-SYN in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Muller CM, Rub U, et al. Pathology associated with sporadic Parkinson’s disease—where does it end? J Neural Transm Suppl. 2006;89–97.

    Google Scholar 

  6. Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59:591–6.

    Article  PubMed  Google Scholar 

  7. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  8. Savitt JM, Dawson VL Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116(7):1744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in parkinsons disease. Nat Rev Neurosci. 2017;18:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenthal N, Brown S. The mouse ascending: perspectives for human-disease models. Nat Cell Biol. 2007;9:993–9.

    Article  CAS  PubMed  Google Scholar 

  12. Landel CP, Chen SZ, Evans GA. Reverse genetics using transgenic mice. Annu Rev Physiol. 1990;52:841–51.

    Article  CAS  PubMed  Google Scholar 

  13. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89:5547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sprengel R, Hasan MT. Tetracycline-controlled genetic switches. Handb Exp Pharmacol. 2007;49–72.

    Google Scholar 

  15. Kitada T, Tong Y, Gautier CA, Shen J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem. 2009;111:696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med. 2012;2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dave KD, De Silva S, Sheth NP, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis. 2014;70:190–203.

    Article  CAS  PubMed  Google Scholar 

  18. West RJ, Furmston R, Williams CA, Elliott CJ. Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis. 2015;2015:381281.

    PubMed  PubMed Central  Google Scholar 

  19. Whitworth AJ. Drosophila models of Parkinson’s disease. Adv Genet. 2011;73:1–50.

    CAS  PubMed  Google Scholar 

  20. Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000;404:394–8.

    Article  CAS  PubMed  Google Scholar 

  21. Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-SYN gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kruger R, Kuhn W, al MT. Ala30Pro mutation in the gene encoding alpha-SYN in Parkinson’s disease. Nat Genet. 1998;18:106–8.

    Article  CAS  PubMed  Google Scholar 

  24. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-SYN causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.

    Article  CAS  PubMed  Google Scholar 

  25. Singleton AB, Farrer M, Johnson J, et al. alpha-SYN locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    Article  CAS  PubMed  Google Scholar 

  26. Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira M, Massano J. An updated review of Parkinson’s disease genetics and clinicopatholgical correlation. Acta Neurol Scand. 2017;135(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  28. Lee VM, Trojanowski JQ. Mechanisms of Parkinson’s disease linked to pathological alpha-SYN: new targets for drug discovery. Neuron. 2006;52:33–8.

    Article  CAS  PubMed  Google Scholar 

  29. Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of alpha-SYN and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry. 2003;42:7871–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fernagut PO, Chesselet MF. Alpha-SYN and transgenic mouse models. Neurobiol Dis. 2004;17:123–30.

    Article  CAS  PubMed  Google Scholar 

  31. Giasson BI, Duda JE, Quinn SM, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-SYN. Neuron. 2002;34:521–33.

    Article  CAS  PubMed  Google Scholar 

  32. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human alpha-SYN transgenic mice after treatment with MPTP. Exp Neurol. 2004;186:158–72.

    Article  CAS  PubMed  Google Scholar 

  33. Kuwahara T, Koyama A, Gengyo-Ando K, et al. Familial Parkinson mutant alpha-SYN causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem. 2006;281:334–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lakso M, Vartiainen S, Moilanen AM, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-SYN. J Neurochem. 2003;86:165–72.

    Article  CAS  PubMed  Google Scholar 

  35. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7:97–109.

    Article  CAS  PubMed  Google Scholar 

  36. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  PubMed  Google Scholar 

  37. Martin LJ, Pan Y, Price AC, et al. Parkinson’s disease alpha-SYN transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Javed H, Menon S, Al-Mansoori K, et al. Development of non-viral vectors targeting the brain as a therapy for Parkinson’s disease and other brain disorders. Mol Ther. 2016;24(4):746–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Norris EH, Uryu K, Leight S, et al. Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol. 2007;170:658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-SYN impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283:9089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci. 2005;25:7968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mandir AS, Przedborski S, Jackson-Lewis V, et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999;96:5774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain. 2008;131:1969–78.

    Article  PubMed  Google Scholar 

  44. Biskup S, Gerlach M, Kupsch A, et al. Genes associated with Parkinson syndrome. J Neurol. 2008;255(Suppl 5):8–17.

    Article  CAS  PubMed  Google Scholar 

  45. Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-SYN display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–52.

    Article  CAS  PubMed  Google Scholar 

  46. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-SYN cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123:383–96.

    Article  CAS  PubMed  Google Scholar 

  47. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.

    Article  CAS  PubMed  Google Scholar 

  48. Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–69.

    Article  CAS  PubMed  Google Scholar 

  49. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol. 2007;17:592–8.

    Article  CAS  PubMed  Google Scholar 

  50. Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41.

    Article  CAS  PubMed  Google Scholar 

  51. Saha S, Guillily MD, Ferree A, et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci. 2009;29:9210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Venderova K, Kabbach G, Abdel-Messih E, et al. Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet. 2009;18:4390–404.

    Article  CAS  PubMed  Google Scholar 

  53. Ramonet D, Daher JP, Lin BM, et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 2011;6:e18568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin X, Parisiadou L, Gu XL, et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-SYN. Neuron. 2009;64:807–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang D, Tang B, Zhao G, et al. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener. 2008;3:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tong Y, Shen J. Genetic analysis of Parkinson’s disease-linked leucine-rich repeat kinase 2. Biochem Soc Trans. 2012;40:1042–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Liu W, Oo TF, et al. Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12:826–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med. 2010;16:998–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cookson MR, Bandmann O. Parkinson’s disease: insights from pathways. Hum Mol Genet. 2010;19:R21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Andres-Mateos E, Mejias R, Sasaki M, et al. Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci. 2009;29:15846–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prabhudesai S, Bensabeur FZ, Abdullah R, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and SYN aggregation. J Neurosci Res. 2016;94:717–35.

    Article  CAS  PubMed  Google Scholar 

  62. Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008;314:2055–65.

    Article  CAS  PubMed  Google Scholar 

  63. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    Article  CAS  PubMed  Google Scholar 

  64. Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 2000;342:1560–7.

    Article  CAS  PubMed  Google Scholar 

  65. Gasser T. Mendelian forms of Parkinson’s disease. Biochim Biophys Acta. 2009;1792:587–96.

    Article  CAS  PubMed  Google Scholar 

  66. Heutink P. PINK-1 and DJ-1—new genes for autosomal recessive Parkinson’s disease. J Neural Transm Suppl. 2006;215–9.

    Google Scholar 

  67. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25:302–5.

    Article  CAS  PubMed  Google Scholar 

  68. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11:1214–21.

    Article  CAS  PubMed  Google Scholar 

  69. Yao D, Gu Z, Nakamura T, et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A. 2004;101:10810–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 2003;100:4078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Whitworth AJ, Theodore DA, Greene JC, et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2005;102:8024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278:43628–35.

    Article  CAS  PubMed  Google Scholar 

  73. Itier JM, Ibanez P, Mena MA, et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet. 2003;12:2277–91.

    Article  CAS  PubMed  Google Scholar 

  74. Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A. 2005;102:2174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. von Coelln R, Thomas B, Andrabi SA, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci. 2006;26:3685–96.

    Article  CAS  Google Scholar 

  76. Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ko HS, Kim SW, Sriram SR, et al. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem. 2006;281(24):16193–6.

    Article  CAS  PubMed  Google Scholar 

  78. Lu XH, Fleming SM, Meurers B, et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-SYN. J Neurosci. 2009;29:1962–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sang TK, Chang HY, Lawless GM, et al. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci. 2007;27:981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang C, Lu R, Ouyang X, et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci. 2007;27:8563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lim KL, Chew KC, Tan JM, et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci. 2005;25:2002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.

    Article  CAS  PubMed  Google Scholar 

  84. West AB, Maidment NT. Genetics of parkin-linked disease. Hum Genet. 2004;114(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  85. Kubo SI, Kitami T, Noda S, et al. Parkin is associated with cellular vesicles. J Neurochem. 2001;78:42–54.

    Article  CAS  PubMed  Google Scholar 

  86. Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–41.

    Article  CAS  PubMed  Google Scholar 

  87. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441:1162–6.

    Article  CAS  PubMed  Google Scholar 

  88. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.

    Article  CAS  PubMed  Google Scholar 

  89. Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105:1638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One. 2009;4:e5777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A. 2007;104:11441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou H, Falkenburger BH, Schulz JB, et al. Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci. 2007;3:242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelm-Nelson CA, Stevenson SA, Ciucci MR. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 -/- rat model of Parkinson disease. Neurosci Lett. 2016;621:75–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. 2005;14:3477–92.

    Article  CAS  PubMed  Google Scholar 

  95. Zhou C, Huang Y, Shao Y, et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008;105:12022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haque ME, Thomas KJ, D’Souza C, et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. PNAS. 2008;105(5):1716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gandhi S, Wood-Kaczmar A, Yao Z, et al. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009;33:627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pridgeon JW, Olzmann JA, Chin LS, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007;5:e172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1(2):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morais VA, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science. 2014;344:203–7.

    Article  CAS  PubMed  Google Scholar 

  101. Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336:1306–10.

    Article  CAS  PubMed  Google Scholar 

  102. Bonifati V, Rizzu P, Squitieri F, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24:159–60.

    Article  CAS  PubMed  Google Scholar 

  103. Moore DJ, Dawson VL, Dawson TM. Lessons from Drosophila models of DJ-1 deficiency. Sci Aging Knowl Environ. 2006;2006:pe2.

    Article  Google Scholar 

  104. Macedo MG, Anar B, Bronner IF, et al. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum Mol Genet. 2003;12:2807–16.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet. 2005;14:2063–73.

    Article  CAS  PubMed  Google Scholar 

  106. Kahle PJ, Waak J, Gasser T. DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med. 2009;47:1354–61.

    Article  CAS  PubMed  Google Scholar 

  107. Andres-Mateos E, Perier C, Zhang L, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A. 2007;104:14807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van der Brug MP, Blackinton J, Chandran J, et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci U S A. 2008;105(29):10244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yang Y, Gehrke S, Haque ME, et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A. 2005;102:13670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–96.

    Article  CAS  PubMed  Google Scholar 

  111. Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A. 2005;102:5215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101:9103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moore DJ, Zhang L, Troncoso J, et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet. 2005;14:71–84.

    Article  CAS  PubMed  Google Scholar 

  114. Ito G, Ariga H, Nakagawa Y, Iwatsubo T. Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1. Biochem Biophys Res Commun. 2006;339:667–72.

    Article  CAS  PubMed  Google Scholar 

  115. Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468:696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Petrucelli L, O’Farrell C, Lockhart PJ, et al. Parkin protects against the toxicity associated with mutant alpha-SYN: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron. 2002;36:1007–19.

    Article  CAS  PubMed  Google Scholar 

  117. Dagda RK, Cherra SJ 3rd, Kulich SM, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284:13843–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cherra SJ 3rd, Dagda RK, Tandon A, Chu CT. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy. 2009;5:1213–4.

    Article  PubMed  Google Scholar 

  119. Apfeld J, Fontana W. Age-dependence and aging-dependence: neuronal loss and lifespan in a C. elegans model of Parkinson’s disease. Biology (Basel). 2017;7(1)

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research grants support from the CMHS, United Arab Emirates University and the National Research foundation, United Arab Emirates to MEH is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emdadul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanushkodi, N.R., Haque, M.E. (2019). Molecular Mechanisms of Neurodegeneration: Insights from the Studies of Genetic Model of Parkinson’s Disease. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics