Skip to main content

The Analysis of Event-Related Potentials

  • Chapter
  • First Online:
Computational EEG Analysis

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2796 Accesses

Abstract

In this chapter, we provide an introduction to the major methods used for the analysis and classification of Event-Related Potentials (ERPs). We start by considering the problem of estimating ERP ensemble averages in the time domain. An estimator allowing for weights and time shifts for each trial is discussed. Then we consider spatial, temporal and spatio-temporal multivariate filters for improving the estimation, including principal component analysis, the common spatial pattern and blind source separation. Then, we review time-frequency analysis methods. The reader is provided with definitions in order to understand the most commonly used linear and non-linear measures used in the time-frequency domain. We continue with a brief discussion on the importance of the analysis in the spatial domain, including topographic maps and tomographies. Next, we review procedures for applying inferential statistics to ERP studies. Emphasis is given to procedures based on permutation tests, which account for the multiple comparison problem and adapt to the form and degree of correlation between hypotheses. Finally, we consider the problem of classifying ERP single-trials, pointing to recent literature covering the most promising methods currently available, namely, Riemannian geometry, random forests and neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The time of the day is also a circular quantity and provides a good example. The appropriate average of 22 h and 1 h is 23 h 30, but this is very far from their arithmetic mean. See also Cohen [14, pp. 214–246].

  2. 2.

    The global field power is defined for each time sample as the sum of the squares of the potential difference at all electrodes. It is very useful in ERP analysis to visualize ERP peaks regardless their spatial distribution [52].

References

  1. S. Arndt, T. Cizadlo, N.C. Andreasen et al., Tests for comparing images based on randomization and permutation methods. J. Cereb. Blood Flow Metab. 16, 1271–1279 (1996)

    Article  Google Scholar 

  2. A. Barachant, S. Bonnet, M. Congedo et al., Multi-class brain computer interface classification by riemannian geometry. IEEE Trans. Biomed. Eng. 59, 920–928 (2012)

    Article  Google Scholar 

  3. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Y. Benjamini, D. Yukutieli, The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001)

    Article  MathSciNet  Google Scholar 

  5. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–12 (2009)

    Article  Google Scholar 

  6. R.C. Blair, J.F. Troendle, R.W. Beck, Control of familywise errors in multiple assessments via stepwise permutation tests. Stat. Med. 15, 1107–1121 (1996)

    Article  Google Scholar 

  7. P. Bloomfield, Fourier Analysis of Time Series. An Introduction, 2nd edn. (Wiley, Hoboken, New Jersey, 2000), p. 261

    Google Scholar 

  8. A. Burns, Fourier-, Hilbert- and wavelet-based signal analysis: are they really independent approaches? J. Neurosci. Methods 137, 321–332 (2004)

    Article  Google Scholar 

  9. G. Buszáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012)

    Article  Google Scholar 

  10. R.T. Canolty, E. Edwards, S.S. Dalal et al., High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006)

    Article  ADS  Google Scholar 

  11. J.-F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86, 2009–2025 (1998)

    Article  Google Scholar 

  12. R.M. Chapman, J.W. McCrary, EP component identification and measurement by principal component analysis. Brain Cogn. 27, 288–310 (1995)

    Article  Google Scholar 

  13. M. Chavez, M. Besserve, C. Adam et al., Towards a proper estimation of phase synchronization from time series. J. Neurosci. Methods 154, 149–160 (2006)

    Article  Google Scholar 

  14. M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice (The MIT Press, Cambridge, Massachusetts, 2014), p. 600

    Google Scholar 

  15. M.X. Cohen, J.F. Cavanagh, Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Front. Psychol. 2, 30 (2011)

    Article  Google Scholar 

  16. L.L. Colgin, Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 31, 45–50 (2015)

    Article  Google Scholar 

  17. P. Comon, C. Jutten (eds.), Handbook of Blind Source Separation, Independent Component Analysis and Applications (Academic Press, Cambridge, MA, 2010)

    Google Scholar 

  18. M. Congedo, EEG Source Analysis. Dissertation, University of Grenoble Alpes, 2013

    Google Scholar 

  19. M. Congedo, A. Barachant, R. Bhatia, Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. BCI 4, 155–174 (2017)

    Google Scholar 

  20. M. Congedo, C. Gouy-Pailler, C. Jutten, On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clin. Neurophysiol. 119, 2677–2686 (2008)

    Article  Google Scholar 

  21. M. Congedo, M. Goyat, N. Tarrin et al., in “Brain Invaders”: A Prototype of an Open-Source P300- Based Video Game Working with the OpenViBE. 5th International Brain-Computer Interface Conference, Graz, Austria, September 2011. (2011), pp. 280–283

    Google Scholar 

  22. M. Congedo, L. Korczowski, A. Delorme et al., Spatio-temporal common pattern; a reference companion method for ERP analysis. J. Neurosci. Methods 267, 74–88 (2016)

    Article  Google Scholar 

  23. M. Congedo, F.H. Lopes da Silva, Event-related potentials: general aspects of methodology and quantification, in Niedermeyer’s Electroencephalography, Basic Principles, Clinical Applications, and Related Fields, ed. by D.L. Schomer, F.H. Lopes da Silva (Oxford University Press, Oxford, 2017)

    Google Scholar 

  24. M. Congedo, S. Rousseau, C. Jutten, An introduction to EEG source analysis with an illustration of a study on error-related potentials, in Guide to Brain-Computer Music Interfacing, ed. by E. Miranda, J. Castet (Springer, London, 2014), p. 313

    Google Scholar 

  25. A. Delorme, J. Palmer, J. Onton et al., Independent EEG sources are dipolar. PLoS One 7, e30135 (2012)

    Article  ADS  Google Scholar 

  26. A. Delorme, T. Sejnowski, S. Makeig, Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34, 1443–1449 (2007)

    Article  Google Scholar 

  27. J. Dien, Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology 47, 170–183 (2010)

    Article  Google Scholar 

  28. E. Donchin, A multivariate approach to the analysis of average evoked potentials. IEEE Trans. Biomed. Eng. 3, 131–139 (1966)

    Article  Google Scholar 

  29. E. Donchin, Discriminant analysis in average evoked response studies: the study of single trial data. Electroencephalogr. Clin. Neurophysiol. 27, 311–314 (1969)

    Article  Google Scholar 

  30. E.S. Edgington, Randomization Tests, 3rd edn. (Marcel Dekker, New York, 1995)

    MATH  Google Scholar 

  31. M. Falkenstein, J. Hohnsbein, J. Hoormann et al., Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 (1991)

    Article  Google Scholar 

  32. A. Farcomeni, L. Finos, FDR control with pseudo-gatekeeping based on possibly data driven order of The hypotheses. Biometrics 69, 606–613 (2013)

    Article  MathSciNet  Google Scholar 

  33. F. Farooq, P. Kidmose, in Random Forest Classification for P300 Based Brain Computer Interface Applications. 21th European Signal Processing Conference, Marrakech, Morocco, September 2013. (2013) pp. 1–5

    Google Scholar 

  34. L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prothesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

    Article  Google Scholar 

  35. R.A. Fisher, Design of Experiments (Oliver and Boyd, Edinburgh, 1935)

    Google Scholar 

  36. W.J. Freeman, Mechanism and significance of global coherence in scalp EEG. Curr. Opin. Neurobiol. 31, 199–205 (2015)

    Article  Google Scholar 

  37. D. Gabor, Theory of communication. J. IEE (London) 93, 429–457 (1946)

    Google Scholar 

  38. W. Guo, M.B. Rao, On control of the false discovery rate under no assumption of dependency. J. Stat. Plan. Interference 138, 3176–3188 (2008)

    Article  MathSciNet  Google Scholar 

  39. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  ADS  Google Scholar 

  40. R. Heller, D. Yekutieli, Replicability analysis for genome-wide association studies. Ann. Appl. Stat. 8, 481–498 (2014)

    Article  MathSciNet  Google Scholar 

  41. Y. Hochberg, A.C. Tamhane, Multiple Comparison Procedures (Wiley, Hoboken, NJ, 1987)

    Book  Google Scholar 

  42. S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  43. A.P. Holmes, R.C. Blair, J.D.G. Watson et al., Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7–22 (1996)

    Article  Google Scholar 

  44. B.H. Jansen, G. Agarwal, A. Hedge et al., Phase synchronization of the ongoing EEG and auditory EP generation. Clin. Neurophysiol. 114, 79–85 (2003)

    Article  Google Scholar 

  45. E.R. John, D.S. Ruchkin, J. Vilegas, Experimental background: signal analysis and behavioral correlates of evoked potential configurations in cats. Ann. N. Y. Acad. Sci. 112, 362–420 (1964)

    Article  ADS  Google Scholar 

  46. W. Karniski, R.C. Blair, A.D. Snider, An exact statistical method for comparing topographic maps, with any number of subjects and electrodes. Brain Topogr. 6, 203–210 (1994)

    Article  Google Scholar 

  47. P.-J. Kindermans, D. Verstraeten, B. Schrauwen, A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI. PLoS ONE 7, e33758 (2012)

    Article  ADS  Google Scholar 

  48. P.-J. Kindermans, M. Schreuder, B. Schrauwen et al., True zero-training brain-computer interfacing—an online study. PLoS One 9, e102504 (2014)

    Article  ADS  Google Scholar 

  49. L. Korczowski, F. Bouchard, C. Jutten et al., in Mining the Bilinear Structure of Data with Approximate Joint Diagonalization. 24th European Signal Processing Conference, Budapest, Hungary, August 2016. (2016) pp. 667–671

    Google Scholar 

  50. J.-P. Lachaux, E. Rodriguez, J. Martinerie et al., Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  51. T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J. Clin. Neurophysiol. 14, 73–82 (1997)

    Article  Google Scholar 

  52. D. Lehmann, W. Skrandies, Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 48, 609–621 (1980)

    Article  Google Scholar 

  53. M. Le Van Quyen, J. Foucher, J.-P. Lachaux et al., Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111, 83–98 (2001)

    Article  Google Scholar 

  54. J.E. Lisman, O. Jensen, The theta-gamma neural code. Neuron 77, 1002–1016 (2013)

    Article  Google Scholar 

  55. R.R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)

    Article  ADS  Google Scholar 

  56. J.M. Lęski, Robust weighted averaging. IEEE Trans. Biomed. Eng. 49, 796–804 (2002)

    Article  Google Scholar 

  57. F.H. Lopes da Silva, Event-related neural activities: what about phase? Prog. Brain Res. 159, 3–17 (2006)

    Article  Google Scholar 

  58. F.H. Lopes da Silva, J.P. Pijn, D. Velis et al., Alpha rhythms: noise, dynamics, and models. Int. J. Psychophysiol. 26, 237–249 (1997)

    Article  Google Scholar 

  59. F. Lotte, M. Congedo, A. Lécuyer et al., A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  60. F. Lotte, L. Bougrain, A. Cichocki et al., A review of classification algorithms for EEG-based brain-computer interfaces: a 10-year update (Manuscript submitted for publication) (2018)

    Google Scholar 

  61. S. Luck, An Introduction to the Event-Related Potential Technique, 2nd edn. (The MIT Press, Cambridge, MA, 2014)

    Google Scholar 

  62. S. Makeig, M. Westerfield, T.P. Jung et al., Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002)

    Article  ADS  Google Scholar 

  63. E. Maris, R. Oostenveld, Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007)

    Article  Google Scholar 

  64. S.L. Marple, Computing the discrete-time analytic signal via FFT. IEEE Trans. Signal Process. 47, 2600–2603 (1999)

    Article  ADS  Google Scholar 

  65. A. Mazaheri, O. Jensen, Rhythmic pulsing: linking ongoing brain activity with evoked responses. Front. Hum. Neurosci. 4, 177 (2010)

    Article  Google Scholar 

  66. L. Mayaud, S. Cabanilles, A. Van Langhenhove et al., Brain-computer interface for the communication of acute patients: a feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device. BCI 3, 197–215 (2016)

    Google Scholar 

  67. F. Mormann, K. Lehnertz, P. David et al., Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358–369 (2000)

    Article  ADS  Google Scholar 

  68. R. Näätänen, A.W.K. Gaillard, S. Mäntysalo, Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42, 313–329 (1978)

    Article  Google Scholar 

  69. V.V. Nikulin, K. Linkenkaer-Hansen, G. Nolte et al., Non-zero mean and asymmetry of neuronal oscillations have different implications for evoked responses. Clin. Neurophysiol. 121, 186–193 (2010)

    Article  Google Scholar 

  70. P.L. Nunez, R. Srinivasan, Electric Field of the Brain: The Neurophysics of EEG (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  71. R. Oostenveld, P. Fries, E. Maris et al., FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1 (2011)

    Article  Google Scholar 

  72. T.E. Özkurt, A. Schnitzler, A critical note on the definition of phase-amplitude cross-frequency coupling. J. Neurosci. Methods 201, 438–443 (2011)

    Article  Google Scholar 

  73. S. Palva, J.M. Palva, Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16, 219–230 (2012)

    Article  Google Scholar 

  74. R.D. Pascual-Marqui, Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv:0711.1455 (2007)

  75. F. Pesarin, Multivariate Permutation Tests (Wiley, Hoboken, NJ, 2001)

    MATH  Google Scholar 

  76. K.M. Petersson, T.E. Nichols, J.-B. Poline et al., Statistical limitations in functional neuroimaging II. Signal detection and statistical inference. Philos. Trans. Roy. Soc. Lond. 354, 1261–1281 (1999)

    Article  Google Scholar 

  77. G. Pfurtscheller, F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  78. D.-T. Pham, J.-F. Cardoso, Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Process. 49, 1837–1848 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  79. T.W. Picton, S. Bentin, P. Berg et al., Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37, 127–152 (2000)

    Article  Google Scholar 

  80. E.J.G. Pitman, Significance tests which may be applied to samples from any population. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 4, 119–130 (1937)

    MATH  Google Scholar 

  81. E.J.G. Pitman, Significance tests which may be applied to samples from any population. II. The correlation coefficient. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 4, 225–232 (1937)

    MATH  Google Scholar 

  82. E.J.G. Pitman, Significance tests which may be applied to samples from any population. III. The analysis of Variance test. Biometrika 29, 322–335 (1938)

    MATH  Google Scholar 

  83. B. Rivet, A. Souloumiac, V. Attina et al., xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. Biomed. Eng. 56, 2035–2043 (2009)

    Article  Google Scholar 

  84. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)

    Article  ADS  Google Scholar 

  85. D.S. Ruchkin, An analysis of average response computatios based upon aperiodic stimuli. IEEE Trans. Biomed. Eng. 12, 87–94 (1965)

    Article  Google Scholar 

  86. S.C. Sereno, K. Rayner, Measuring word recognition in reading: eye-movements and event-related potentials. Trends Cogn. Sci. 7, 489–493 (2003)

    Article  Google Scholar 

  87. J.D. Storey, A direct approach to false discovery rate. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 4, 479–498 (2002)

    Article  MathSciNet  Google Scholar 

  88. S. Sutton, M. Braren, J. Zubin et al., Evoked-potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)

    Article  ADS  Google Scholar 

  89. C. Tallon-Baudry, O. Bertrand, C. Delpuech et al., Stimulus specificity of phase-locked and non-Phase-locked 40 Hz visual responses in human. J. Neurosci. 16, 4240–4249 (1996)

    Article  Google Scholar 

  90. P. Tass, M.G. Rosenblum, J. Weule et al., Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  ADS  Google Scholar 

  91. J.F. Troendle, A stepwise resampling method of multiple hypothesis testing. J. Am. Stat. Assoc. 90, 370–378 (1995)

    Article  MathSciNet  Google Scholar 

  92. J.F. Troendle, A permutation step-up method of testing multiple outcomes. Biometrics 952, 846–859 (1996)

    Article  MathSciNet  Google Scholar 

  93. F. Varela, J.-P. Lachaux, E. Rodriguez et al., The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)

    Article  Google Scholar 

  94. M. Vinck, R. Oostenveld, M. van Wingerden et al., An improved index of phase synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 55, 1548–1565 (2011)

    Article  Google Scholar 

  95. M. Wagner, M. Fuchs, J. Kastner, Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr. 16, 277–280 (2004)

    Article  Google Scholar 

  96. W.G. Walter, R. Cooper, V.J. Aldridge et al., Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203, 380–384 (1964)

    Article  ADS  Google Scholar 

  97. P.H. Westfall, S.S. Young, Resampling-Based Multiple Testing. Examples and Methods for p-Values Adjustment (Wiley, Hoboken, NJ, 1993)

    Google Scholar 

  98. A. Widmann, E. Schröger, B. Maess, Digital filter design for electrophysiological data—a practical approach. J. Neurosci. Methods 250, 34–46 (2014)

    Article  Google Scholar 

  99. M. Woldorff, Adjacent response overlap during the ERP averaging process and a technique (Adjar) for its estimation and removal. Psychophysiology 25, 490 (1988)

    Google Scholar 

  100. M. Woldorff, Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology 30, 98–119 (1993)

    Article  Google Scholar 

  101. J. Wolpaw, E.W. Wolpaw (eds.), Brain-Computer Interfaces: Principles and Practice (Oxford University Press, New York, 2012), p. 424

    Google Scholar 

  102. D. Yekutieli, Hierarchical false discovery rate-controlling methodology. J. Am. Stat. Assoc. 103, 309–316 (2012)

    Article  MathSciNet  Google Scholar 

  103. F. Yger, M. Berar, F. Lotte, Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1753–1762 (2016)

    Article  Google Scholar 

  104. K. Yu, K. Shen, S. Shao et al., Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage. J. Neural Eng. 9, 046013 (2012)

    Article  ADS  Google Scholar 

  105. P. Zanini, M. Congedo, C. Jutten et al., Transfer learning: a riemannian geometry framework with applications to brain-computer interfaces. IEEE Trans. Biomed. Eng. (2017 in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Congedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Congedo, M. (2018). The Analysis of Event-Related Potentials. In: Im, CH. (eds) Computational EEG Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_4

Download citation

Publish with us

Policies and ethics