Skip to main content

The Genetics of Inherited Retinal Diseases in the Israeli and Palestinian Populations: A Lesson from Populations with High Rates of Consanguinity

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Inherited retinal diseases (IRDs) are disorders that cause visual loss mainly due to photoreceptor degeneration. The prevalence of IRDs in the Israeli and Palestinian populations was reported to be higher compared to other studied populations. The structures of the Israeli and Palestinian populations are unique mainly because of the large number of ethnic groups. In addition, high rates of consanguinity and intra-community marriages resulted in a high proportion of families with autosomal recessive inheritance patterns. The study of Israeli and Palestinian IRD families resulted so far in the identification of mutations in 74 IRD genes, including 23 novel genes that were identified mainly using the homozygosity mapping and whole exome sequencing techniques. The history and tradition of these populations led to common founder mutations that are usually subpopulation-specific. Such mutations allow a more efficient genetic analysis in searching for the causative gene. However, some founder mutations are shared among different ethnicities and are likely to be the result of a common origin of these ethnic groups, which may have an estimated divergence time of a few thousand years. There is a large variability of retinal phenotypes among patients, while mutations in the same gene can result either in the same phenotype or variable phenotypes that are usually mutation-dependent. There is currently no cure for the vast majority of IRD types; however recent advances bring new hope for curing or at least delaying the degeneration process in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ducroq D. mfl. Three different ABCA4 mutations in the same large family with several consanguineous loops affected with autosomal recessive cone-rod dystrophy. Eur J Hum Genet. 2006;14:1269–73.

    Article  CAS  Google Scholar 

  2. Beit-Ya’acov A. mfl. Homozygosity for a novel ABCA4 founder splicing mutation is associated with progressive and severe Stargardt-like disease. Invest Ophthalmol Vis Sci. 2007;48:4308–14.

    Article  Google Scholar 

  3. Spiegel R. mfl. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet. 2012;90:518–23.

    Article  CAS  Google Scholar 

  4. Parry DA. mfl. Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice. Am J Hum Genet. 2009;84:683–91.

    Article  CAS  Google Scholar 

  5. Beryozkin A. mfl. Whole exome sequencing reveals mutations in known retinal disease genes in 33 out of 68 Israeli families with inherited retinopathies. Sci Rep. 2015;5:13187.

    Article  CAS  Google Scholar 

  6. Banin E. mfl. Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther. 2010;21:1749–57.

    Article  CAS  Google Scholar 

  7. Lazar CH. mfl. Nonsyndromic early-onset cone-rod dystrophy and limb-girdle muscular dystrophy in a consanguineous Israeli family are caused by two independent yet linked mutations in ALMS1 and DYSF. Hum Mutat. 2015;36:836–41.

    Article  CAS  Google Scholar 

  8. Davidson AE. mfl. Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2013;93:321–9.

    Article  CAS  Google Scholar 

  9. Chiang AP. mfl. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet. 2004;75:475–84.

    Article  CAS  Google Scholar 

  10. Van De Weghe JC. mfl. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome in humans and ciliopathy phenotypes in zebrafish. Am J Hum Genet. 2017. https://doi.org/10.1016/j.ajhg.2017.05.010.

  11. Shevach E. mfl. Association between missense mutations in the BBS2 gene and nonsyndromic retinitis Pigmentosa. JAMA Ophthalmol. 2015;133:312.

    Article  Google Scholar 

  12. Lindstrand A. mfl. Copy-number variation contributes to the mutational load of Bardet-Biedl syndrome. Am J Hum Genet. 2016;99:318–36.

    Article  CAS  Google Scholar 

  13. Bitner H. mfl. A homozygous frameshift mutation in BEST1 causes the classical form of Best disease in an autosomal recessive mode. Invest Ophthalmol Vis Sci. 2011;52:5332–8.

    Article  CAS  Google Scholar 

  14. Duncan JL. mfl. Identification of a novel mutation in the CDHR1 gene in a family with recessive retinal degeneration. Arch Ophthalmol. 2012;130:1301.

    Article  CAS  Google Scholar 

  15. Lazar CH. mfl. Whole exome sequencing reveals GUCY2D as a major gene associated with cone and cone-rod dystrophy in Israel. Invest Ophthalmol Vis Sci. 2014;47:3523–30. https://doi.org/10.1167/iovs.14-15647.

    Article  CAS  Google Scholar 

  16. Cohen B. mfl. A novel splice site mutation of CDHR1 in a consanguineous Israeli Christian Arab family segregating autosomal recessive cone-rod dystrophy. Mol Vis. 2012;18:2915–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sprecher E. mfl. Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P-cadherin. Nat Genet. 2001;29:134–6.

    Article  CAS  Google Scholar 

  18. Indelman M. mfl. A missense mutation in CDH3, encoding P-cadherin, causes hypotrichosis with juvenile macular dystrophy. J Invest Dermatol. 2002;119:1210–3.

    Article  CAS  Google Scholar 

  19. Indelman M. mfl. Phenotypic diversity and mutation spectrum in hypotrichosis with juvenile macular dystrophy. J Invest Dermatol. 2003;121:1217–20.

    Article  CAS  Google Scholar 

  20. Indelman M, Leibu R, Jammal A, Bergman R, Sprecher E. Molecular basis of hypotrichosis with juvenile macular dystrophy in two siblings. Br J Dermatol. 2005;153:635–8.

    Article  CAS  Google Scholar 

  21. Indelman M. mfl. Novel CDH3 mutations in hypotrichosis with juvenile macular dystrophy. Clin Exp Dermatol. 2007;32:191–6.

    Article  CAS  Google Scholar 

  22. Avitan-Hersh E, Indelman M, Khamaysi Z, Leibu R, Bergman R. A novel nonsense CDH3 mutation in hypotrichosis with juvenile macular dystrophy. Int J Dermatol. 2012;51:325–7.

    Article  CAS  Google Scholar 

  23. Basel-Vanagaite L, Pasmanik-Chor M, Lurie R, Yeheskel A, Kjaer KW. CDH3-related syndromes: report on a new mutation and overview of the genotype-phenotype correlations. Mol Syndromol. 2011;1:223–30.

    Article  CAS  Google Scholar 

  24. Namburi P. mfl. Bi-allelic truncating mutations in CEP78, encoding centrosomal protein 78, cause cone-rod degeneration with sensorineural hearing loss. Am J Hum Genet. 2016;99:777–84.

    Article  CAS  Google Scholar 

  25. Khateb S. mfl. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet. 2014;51:460–9.

    Article  CAS  Google Scholar 

  26. Beryozkin A. mfl. Identification of mutations causing inherited retinal degenerations in the israeli and palestinian populations using homozygosity mapping. Invest Ophthalmol Vis Sci. 2014;55:1149–60.

    Article  CAS  Google Scholar 

  27. Auslender N. mfl. A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Investig Ophthalmol Vis Sci. 2007;48:5431–8.

    Article  Google Scholar 

  28. Khateb S. mfl. Identification of genomic deletions causing inherited retinal degenerations by coverage analysis of whole exome sequencing data. J Med Genet. 2016;53:600–7.

    Article  CAS  Google Scholar 

  29. Zelinger L, Greenberg A, Kohl S, Banin E, Sharon D. An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Hum Genet. 2010;128:261–7.

    Article  Google Scholar 

  30. Zelinger L. mfl. Genetics and disease expression in the CNGA3 form of achromatopsia: steps on the path to gene therapy. Ophthalmology. 2015;122:997–1007.

    Article  Google Scholar 

  31. Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vis. 2015;21:783–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Parry DA. mfl. Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2008;84:266–73.

    Article  Google Scholar 

  33. Gerber S. mfl. A novel mutation disrupting the cytoplasmic domain of CRB1 in a large consanguineous family of Palestinian origin affected with Leber congenital amaurosis. Ophthalmic Genet. 2002;23:225–35.

    Article  Google Scholar 

  34. Beryozkin A. mfl. Mutations in CRB1 are a relatively common cause of autosomal recessive early-onset retinal degeneration in the Israeli and Palestinian populations. Invest Ophthalmol Vis Sci. 2013;54:2068–75.

    Article  Google Scholar 

  35. Benayoun L. mfl. Genetic heterogeneity in two consanguineous families segregating early onset retinal degeneration: the pitfalls of homozygosity mapping. Am J Med Genet A. 2009;15:650–6.

    Article  Google Scholar 

  36. Collin RW. mfl. Mutations in C2ORF71 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;86:783–8.

    Article  CAS  Google Scholar 

  37. Estrada-Cuzcano A. mfl. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. Am J Hum Genet. 2012;90:102–9.

    Article  CAS  Google Scholar 

  38. Zelinger L. mfl. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet. 2011;88:207–15.

    Article  CAS  Google Scholar 

  39. Bandah-Rozenfeld D. mfl. Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population. Invest Ophthalmol Vis Sci. 2010;51:4387–94.

    Article  Google Scholar 

  40. Bandah-Rozenfeld D. mfl. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87:382–91.

    Article  CAS  Google Scholar 

  41. Zobor D, Balousha G, Baumann B, Wissinger B. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family. Mol Vis. 2014;20:178–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gradstein L. mfl. Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Med Genet. 2016;17:52.

    Article  Google Scholar 

  43. Haer-Wigman L. mfl. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum Mol Genet. 2015;24:3742–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pierrache LHM. mfl. Whole-exome sequencing identifies biallelic IDH3A variants as a cause of retinitis pigmentosa accompanied by pseudocoloboma. Ophthalmology. 2017;124:992–1003.

    Article  Google Scholar 

  45. Bandah-Rozenfeld D. mfl. Mutations in IMPG2, encoding Interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87:199–208.

    Article  CAS  Google Scholar 

  46. Zelinger L. mfl. Cone dystrophy with supernormal rod response: novel KCNV2 mutations in an underdiagnosed phenotype. Ophthalmology. 2013;120:2338–43.

    Article  Google Scholar 

  47. Ozgul RK. mfl. Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am J Hum Genet. 2011;89:253–64.

    Article  Google Scholar 

  48. Benayoun L. mfl. Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient. Mol Genet Metab. 2007;90:453–7.

    Article  CAS  Google Scholar 

  49. Adato A. mfl. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins. Am J Hum Genet. 1997;61:813–21.

    Article  CAS  Google Scholar 

  50. Rizel L. mfl. Novel mutations of MYO7A and USH1G in Israeli Arab families with Usher syndrome type 1. Mol Vis. 2011;17:3548–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goldenberg-Cohen N. mfl. Genetic heterogeneity and consanguinity lead to a «double hit»: homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa. Mol Vis. 2013;19:1565–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Newman H. mfl. Homozygosity for a recessive loss-of-function mutation of the NRL gene is associated with a variant of enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2016;57:5361–71.

    Article  CAS  Google Scholar 

  53. Bandah D, Merin S, Ashhab M, Banin E, Sharon D. The spectrum of retinal diseases caused by NR2E3 mutations in Israeli and Palestinian patients. Arch Ophthalmol. 2009;127:297–302.

    Article  CAS  Google Scholar 

  54. Bandah D. mfl. A novel de novo PAX6 mutation in an Ashkenazi-Jewish family with aniridia. Mol Vis. 2008;14:142–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yahalom C. mfl. Combined occurrence of autosomal dominant Aniridia and autosomal recessive albinism in several members of a family. Ophthalmic Genet. 2015;36:175–9.

    Article  CAS  Google Scholar 

  56. Ben-Yosef T. mfl. A mutation of PCDH15 among Ashkenazi Jews with the type 1 Usher syndrome. N Engl J Med. 2003;348:1664–70.

    Article  CAS  Google Scholar 

  57. Brownstein Z. mfl. The R245X mutation of PCDH15 in Ashkenazi Jewish children diagnosed with nonsyndromic hearing loss foreshadows retinitis pigmentosa. Pediatr Res. 2004;55:995–1000.

    Article  CAS  Google Scholar 

  58. Dvir L. mfl. Autosomal-recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP phosphodiesterase. Am J Hum Genet. 2010;87:258–64.

    Article  CAS  Google Scholar 

  59. Raas-Rothschild A. mfl. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents. Am J Hum Genet. 2002;70:1062–8.

    Article  CAS  Google Scholar 

  60. Smith CEL. mfl. Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur J Hum Genet. 2016;24:1565–71.

    Article  CAS  Google Scholar 

  61. Nevet MJ, Shalev SA, Zlotogora J, Mazzawi N, Ben-Yosef T. Identification of a prevalent founder mutation in an Israeli Muslim Arab village confirms the role of PRCD in the aetiology of retinitis pigmentosa in humans. J Med Genet. 2010;47:533–7.

    Article  CAS  Google Scholar 

  62. Pras E. mfl. Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis. 2009;15:1709–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Eidinger O. mfl. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy. Mol Vis. 2015;21:1295–306.

    PubMed  PubMed Central  Google Scholar 

  64. Roosing S. mfl. Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2013;93:110–7.

    Article  CAS  Google Scholar 

  65. Pras E. mfl. Fundus albipunctatus: novel mutations and phenotypic description of Israeli patients. Mol Vis. 2012;18:1712–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Beryozkin A. mfl. Genetic analysis of the rhodopsin gene identifies a mosaic dominant retinitis pigmentosa mutation in a healthy individual. Invest Ophthalmol Vis Sci. 2016;57:940–7.

    Article  CAS  Google Scholar 

  67. Mizrahi-Meissonnier L, Merin S, Banin E, Sharon D. Variable retinal phenotypes caused by mutations in the X-linked photopigment gene array. Invest Ophthalmol Vis Sci. 2010;51:3884–92.

    Article  Google Scholar 

  68. Banin E, Sharon D. A non-ancestral missense mutation in families with either recessive or semi-dominant X-linked retinitis pigmentosa. Am J Med Genet A. 2007;143A:1150–8.

    Article  CAS  Google Scholar 

  69. Tatour Y mfl. Mutations in SCAPER cause autosomal recessive retinitis pigmentosa with intellectual disability. J Med Genet. In press. 2017.

    Google Scholar 

  70. Perez Y. mfl. Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation. Eur J Hum Genet. 2014;22:703–6.

    Article  CAS  Google Scholar 

  71. Mayer A-K. mfl. Novel homozygous large deletion including the 5′ part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family. Mol Vis. 2015;21:306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiang AP. mfl. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A. 2006;103:6287–92.

    Article  CAS  Google Scholar 

  73. Gal M. mfl. Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability. Am J Med Genet A. 2014;164:2996–3002.

    Article  CAS  Google Scholar 

  74. Abbasi AH, Garzozi HJ, Ben-Yosef T. A novel splice-site mutation of TULP1 underlies severe early-onset retinitis pigmentosa in a consanguineous Israeli Muslim Arab family. Mol Vis. 2008;14:675–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Khateb S. mfl. Exome sequencing identifies a founder frameshift mutation in an alternative exon of USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS One. 2012;7:e51566.

    Article  CAS  Google Scholar 

  76. Adato A, Weston MD, Berry A, Kimberling WJ, Bonne-Tamir A. Three novel mutations and twelve polymorphisms identified in the USH2A gene in Israeli USH2 families. Hum Mutat. 2000;15:388.

    Article  CAS  Google Scholar 

  77. Kaiserman N, Obolensky A, Banin E, Sharon D. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2. Arch Ophthalmol. 2007;125:219–24.

    Article  CAS  Google Scholar 

  78. Auslender N. mfl. Four USH2A founder mutations underlie the majority of usher syndrome type 2 cases among non-Ashkenazi Jews. Genet Test. 2008;12:289–94.

    Article  CAS  Google Scholar 

  79. Behar DM. mfl. The many faces of sensorineural hearing loss: one founder and two novel mutations affecting one family of mixed Jewish ancestry. Genet Test Mol Biomarkers. 2013;18:123–6.

    Article  Google Scholar 

  80. Adato A. mfl. USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur J Hum Genet. 2002;10:339–50.

    Article  CAS  Google Scholar 

  81. Ness SL. mfl. Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet. 2003;40:767–72.

    Article  CAS  Google Scholar 

  82. Herrera W. mfl. Retinal disease in Usher syndrome III caused by mutations in the clarin-1 gene. Invest Ophthalmol Vis Sci. 2008;49:2651–60.

    Article  Google Scholar 

  83. Zlotogora J. The molecular basis of autosomal recessive diseases among the Arabs and Druze in Israel. Hum Genet. 2010;128:473–9.

    Article  CAS  Google Scholar 

  84. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    Article  CAS  Google Scholar 

  85. Brody JA, Hussels I, Brink E, Torres J. Hereditary blindness among Pingelapese people of Eastern Caroline Islands. Lancet. 1970;1:1253–7.

    Article  CAS  Google Scholar 

  86. Zuchner S. mfl. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88:201–6.

    Article  Google Scholar 

  87. Zlotogora J, Bach G, Munnich A. Molecular basis of mendelian disorders among Jews. Mol Genet Metab. 2000;69:169–80.

    Article  CAS  Google Scholar 

  88. Banin E. mfl. Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia. Mol Ther. 2015;23:1423–33.

    Article  CAS  Google Scholar 

  89. Berson EL. mfl. Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:1456–9.

    Article  CAS  Google Scholar 

  90. Rotenstreich Y. mfl. Treatment with 9-cis β-carotene-rich powder in patients with retinitis pigmentosa: a randomized crossover trial. JAMA Ophthalmol. 2013;131:985–92.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethical Requirements

Mor Hanany and Dror Sharon declare that they have no conflict of interest.

No human or animal studies were performed by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Sharon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanany, M., Sharon, D. (2019). The Genetics of Inherited Retinal Diseases in the Israeli and Palestinian Populations: A Lesson from Populations with High Rates of Consanguinity. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics