Skip to main content

Industrial Applications of Cellulases and Hemicellulases

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

Cellulase and hemicellulase products have been developed and widely used in many industrial settings over the last several decades. These applications include textile, animal feed, bakery, brewing, pulp and paper, and biofuel sectors. This chapter illustrates the mechanisms and examples of these applications. Characteristics of enzymes desirable for each of these uses and technologies to gain such properties will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M (1994) Biomechanical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48(3):199–202

    Google Scholar 

  • Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349

    Article  CAS  Google Scholar 

  • Baker JO, Mccarley JR, Lovett R et al (2005) Catalytically enhanced Endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121(1–3):129–148

    Google Scholar 

  • Battan B, Dhiman SS, Ahlawat S et al (2012) Application of thermostable xylanase of Bacillus pumilus in textile processing. Indian J Microbiol 52(2):222–229

    Google Scholar 

  • Beauchemin KA, Rode LM, Sewalt VJH (1995) Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci 75(4):641–644

    Article  Google Scholar 

  • Bedford MR, Classen HL (1992) The influence of dietary xylanase on intestinal viscosity and molecular-weight distribution of carbohydrates in Rye-Fed Broiler chicks. In: Visser J (ed) Xylans and xylanases, Progress in biotechnology, vol 7. Elsevier, Amsterdam, pp 361–370

    Google Scholar 

  • Beg QK, Kapoor M, Mahajan L (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Article  CAS  Google Scholar 

  • Beňová B, Adam M, Onderková K et al (2008) Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. J Sep Sci 31(13):2404–2409

    Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15(1):106

    Google Scholar 

  • Bourne DT, Pierce JS (1970) β-glucan and β-glucanase in brewing. J Inst Brew 76(4):328–335

    Article  CAS  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z et al (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46(1):22–31

    CAS  Google Scholar 

  • Caldini C, Bonomi F, Pifferi PG et al (1994) Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme Microb Technol 16(4):286–291

    Article  CAS  Google Scholar 

  • Celi P, Cowieson A, Fru-Nji F et al (2017) Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Anim Feed Sci Technol 234:88–100

    Article  Google Scholar 

  • Chen H, Li XL, Ljungdahl LG (1997) Sequencing of a 1,3-1,4-beta-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J Bacteriol 179(19):6028–6034

    Google Scholar 

  • Chen XA, Ishida N, Todaka N et al (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus swo1. Appl Environ Microbiol 76(8):2556–2561

    Google Scholar 

  • Cortez J, Ellis J, Bishop D (2001) Cellulase finishing of woven, cotton fabrics in jet and winch machines. J Biotechnol 89(2–3):239–245

    Article  CAS  PubMed  Google Scholar 

  • Dhiman T, Zaman M, Gimenez R (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101(1–4):115–125

    Article  CAS  Google Scholar 

  • Dowman MG, Collins FC (1982) The use of enzymes to predict the digestibility of animal feeds. J Sci Food Agric 33(8):689–696

    Article  CAS  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek EM et al (2016) A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness. Biotechnol Biofuels 9. https://doi.org/10.1186/s13068-016-0488-z

  • Du R, Yan J, Li S et al (2015) Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels 8(1). https://doi.org/10.1186/s13068-014-0186-7

  • Gamage J, Lam H, Zhang Z (2010) Bioethanol production from Lignocellulosic biomass, a review. J Biobased Mater Bioenergy 4(1):3–11

    Article  CAS  Google Scholar 

  • Ghosh P, Singh A (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol:295–333

    Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3(1):347–371

    Article  PubMed  Google Scholar 

  • González-Blasco G, Sanz-Aparicio J, González B et al (2000) Directed evolution of β-glucosidase A from Paenibacillus polymyxato thermal resistance. J Biol Chem 275(18):13708–13712

    Google Scholar 

  • Graminha E, Gonçalves A, Pirota R et al (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144(1–2):1–22

    Article  CAS  Google Scholar 

  • Gunata YZ, Bayonove CL, Cordonnier RE et al (1990) Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β-glucosidases. J Sci Food Agric 50(4):499–506

    Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI et al (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2005) Sorting out metagenomes. Nat Biotechnol 23(1):38–39

    Article  CAS  PubMed  Google Scholar 

  • Hesselman K, Elwinger K, Thomke S (1982) Influence of increasing levels of β-glucanase on the productive value of barley diets for broiler chickens. Anim Feed Sci Technol 7(4):351–358

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  Google Scholar 

  • James J, Simpson BK, Marshall MR (1996) Application of enzymes in food processing. Crit Rev Food Sci Nutr 36(5):437–463

    Article  CAS  PubMed  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlik A et al (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 52(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Johnston DB, Singh V (2004) Enzymatic milling of corn: optimization of soaking, grinding, and enzyme incubation steps. Cereal Chem 81(5):626–632

    Article  CAS  Google Scholar 

  • Kaper T, Brouns SJ, Geerling AC et al (2002) DNA family shuffling of hyperthermostable β-glycosidases. Biochem J 368(2):461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-S, Jung H-C, Pan J-G (2000) Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 66(2):788–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP et al (2010a) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354

    Google Scholar 

  • Kuhad RC, Mehta G, Gupta R et al (2010b) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194

    Google Scholar 

  • Lebbink JHG, Kaper T, Bron P et al (2000) Improving low-temperature catalysis in the hyperthermostable pyrococcus furiosus β-glucosidase CelB by directed evolution. Biochemistry 39(13):3656–3665

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336

    Article  CAS  PubMed  Google Scholar 

  • Lewis GE, Hunt CW, Sanchez WK et al (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Animal Sci 74(12):3020–3028

    Article  CAS  Google Scholar 

  • Li XL, Å pániková S, Vries RPD et al (2007) Identification of genes encoding microbial glucuronoyl esterases. FEBS Lett 581(21):4029–4035

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang X, Yang S et al (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2. https://doi.org/10.5936/csbj.201209017

  • Linko M, Haikara A, Ritala A et al (1998) Recent advances in the malting and brewing. J Biotechnol 65(2-3):85–98

    Article  CAS  Google Scholar 

  • Liu R, Chen L, Jiang Y et al (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1. https://doi.org/10.1038/celldisc.2015.7

  • Lombard V, Golaconda Ramulu H, Drula E et al (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. http://www.cazy.org/. Accessed 18 Nov 2017

  • Mansfield SD, Wong KY, Jong ED et al (1996) Modification of Douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J 79(8):125–132

    CAS  Google Scholar 

  • Medie FM, Davies GJ, Drancourt M et al (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234

    Article  CAS  Google Scholar 

  • Moers K, Celus I, Brijs K et al (2005) Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydr Res 340(7):1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Mosier N (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • O’Neill HVM, Smith JA, Bedford MR (2014) Multicarbohydrase enzymes for non-ruminants. Asian-Australas J Anim Sci 27(2):290–301

    Article  CAS  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. J Inst Brew 91(3):130–130

    Google Scholar 

  • Oksanen T, Pere J, Buchert J et al (1997) The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp. Cellulose 4(4):329–339

    Google Scholar 

  • Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactants Deterg 1(4):555–567

    Article  CAS  Google Scholar 

  • Olson LA (1990) Treatment of denim with cellulase to produce a stone washed appearance. US Patent 4912056

    Google Scholar 

  • Paice MG, Bernier R, Jurasek L (1988) Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol Bioeng 32(2):235–239

    Article  CAS  PubMed  Google Scholar 

  • Pere J, Siika-aho M, Buchert J et al (1995) Effects of purified Trichoderma cellulases on the fiber properties of kraft pulp. Tappi J 78(6):71–78

    Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158(1):58–68

    Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8(9):300–306

    Article  Google Scholar 

  • Qian C, Liu N, Yan X et al (2015) Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability. Enzyme Microb Technol 70:35–41

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108(37):15079–15084

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren LT, Liu ZX, Wei TY et al (2012) Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land. Energy 47(1):166–173

    Article  Google Scholar 

  • Rexen B (1981) Use of enzymes for improvement of feed. Anim Feed Sci Technol 6(2):105–114

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845

    Article  CAS  Google Scholar 

  • Saleh F, Tahir M, Ohtsuka A et al (2005) A mixture of pure cellulase, hemicellulase and pectinase improves broiler performance. Br Poult Sci 46(5):602–606

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S et al (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Google Scholar 

  • Shah AK, Cooper A, Adolphson R et al (2000) Use of an extremely high specific activity xylanase of the fungus Orpinomyces PC-2 in ECF and TCF pulp bleaching. TAPPI J 83:95

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava B, Thakur S, Khasa YP et al (2010) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Herath J, Rockstroh S et al (2009) Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol 75(9):2964–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar PKR, Schugerl K (1991) Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 18(3):205–212

    Article  CAS  Google Scholar 

  • Singh R, Kumar M, Mittal A et al (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Solbak AI, Richardson TH, Mccann RT et al (2005) Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J Biol Chem 280(10):9431–9438

    Google Scholar 

  • Sreenath HK, Shah AB, Yang VW et al (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20

    Article  CAS  Google Scholar 

  • Su SK, Rajendran R, Radhai R et al (2011) Bioscouring of cotton fabrics using pectinase enzyme its optimization and comparison with conventional scouring process. Pak J Biol Sci 14(9):519–525

    Article  CAS  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D et al (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Google Scholar 

  • Therdthai N, Zhou W (2003) Recent advances in the studies of bread baking process and their impacts on the bread baking technology. Food Sci Technol Res 9(3):219–226

    Article  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

    Article  CAS  PubMed  Google Scholar 

  • Vries RD (2003) Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol 61(1):10–20

    Google Scholar 

  • Walsh GA, Power RF, Headon DR (1993) Enzymes in the animal-feed industry. Trends Biotechnol 11(10):424–430

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Qian C, Zhang XZ et al (2012) Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzyme Microb Technol 51(6–7):319–324

    Article  CAS  PubMed  Google Scholar 

  • Waschkowitz T, Rockstroh S, Daniel R (2009) Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl Environ Microbiol 75(8):2506–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Li J, Chang S et al (2014a) Optimization of ethanol production from NaOH-pretreated solid state fermented sweet sorghum bagasse. Energies 7(7):4054–4067

    Article  CAS  Google Scholar 

  • Yu M, Li J, Li S et al (2014b) A cost-effective integrated process to convert solid-state fermented sweet sorghum bagasse into cellulosic ethanol. Appl Energy 115:331–336

    Article  CAS  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  • Zhang Y, Chen S, Xu M (2010) Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. Appl Environ Microbiol 76(23):7896–7896

    Google Scholar 

  • Zou JL, Zheng P, Zhang K et al (2013) Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers. J Anim Sci Biotechnol 4:14. https://doi.org/10.1186/2049-1891-4-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Chang, S.H., Liu, R. (2018). Industrial Applications of Cellulases and Hemicellulases. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_15

Download citation

Publish with us

Policies and ethics