Skip to main content

Microwave Treatment

  • Chapter
  • First Online:
Physical Modifications of Starch

Abstract

Microwave technology has been widely used in food processing and consumption industries for various purposes and can also be used for physical modification of starch. Unlike conventional heating methods, microwave heating has characteristics such as low cost, short start-up time, high heating rate and efficiency. The modification effects of microwave treatment (MWT) on starch are influenced by many factors, like starch properties (starch type, moisture content, density, dielectric properties, temperature, etc.) and microwave processing conditions (frequency, power, radiation time, oven type and geometry). This chapter gives detailed information about starch physical properties changes after MWT such as composition, pasting properties, gelation, micromorphology, swelling and gelatinization, and in vitro digestibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Annealing treatment

BD:

Breakdown viscosity

CHT:

Conventional heat treatment

CPV:

Cold paste viscosity

FTIR:

Fourier transform infrared spectroscopy

HMT:

Heat-moisture treatment

HPV:

Hot paste viscosity

IMC:

Initial moisture content

MWT:

Microwave treatment

PT:

Peak temperature

PV:

Peak viscosity

RHT:

Rapid conventional heat treatment

SB:

Setback viscosity

Tc:

Conclusion temperature

To:

Onset temperature

Tp:

Peak temperature

XRD:

X-ray diffraction

References

  • Abraham, T. E. (1993). Stabilization of paste viscosity of cassava starch by heat moisture treatment. Starch-Stärke, 45, 131–135.

    Article  CAS  Google Scholar 

  • Anderson, A. K., & Guraya, H. S. (2006). Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chemistry, 97, 318–323.

    Article  CAS  Google Scholar 

  • Anderson, A. K., Guraya, H. S., James, C., & Salvaggio, L. (2002). Digestibility and pasting properties of Rice starch heat-moisture treated at the melting temperature (tm). Starch – Stärke, 54, 401–409.

    Article  CAS  Google Scholar 

  • Banik, S., Bandyopadhyay, S., & Ganguly, S. (2003). Bioeffects of microwave – a brief review. Bioresource Technology, 87, 155–159.

    Article  CAS  Google Scholar 

  • Bilbao-Sáinz, C., Butler, M., Weaver, T., & Bent, J. (2007). Wheat starch gelatinization under microwave irradiation and conduction heating. Carbohydrate Polymers, 69, 224–232.

    Article  Google Scholar 

  • Braşoveanu, M., & Nemţanu, M. R. (2014). Behaviour of starch exposed to microwave radiation treatment. Starch-Stärke, 66, 3–14.

    Article  Google Scholar 

  • Casasnovas, J., & Anantheswaran, R. C. (2016). Dynamic measurement of starch granule swelling during microwave heating. Carbohydrate Polymers, 151, 1052–1057.

    Article  CAS  Google Scholar 

  • Chen, X., Li, X., Mao, X., Huang, H., Miao, J., & Gao, W. (2016). Study on the effects of different drying methods on physicochemical properties, structure, and in vitro digestibility of Fritillaria thunbergii Miq. (Zhebeimu) flours. Food and Bioproducts Processing, 98, 266–274.

    Article  CAS  Google Scholar 

  • Collison, R., & Chilton, W. (1974). Starch gelation as a function of water content. International Journal of Food Science & Technology, 9, 309–315.

    Article  Google Scholar 

  • Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416–422.

    Article  CAS  Google Scholar 

  • Dyrek, K., Bidzińska, E., Łabanowska, M., Fortuna, T., Przetaczek, I., & Pietrzyk, S. (2007). EPR study of radicals generated in starch by microwaves or by conventional heating. Starch-Stärke, 59, 318–325.

    Article  CAS  Google Scholar 

  • Emami, S., Perera, A., Meda, V., & Tyler, R. T. (2012). Effect of microwave treatment on starch digestibility and physico-chemical properties of three barley types. Food and Bioprocess Technology, 5, 2266–2274.

    Article  CAS  Google Scholar 

  • Fan, D., Li, C., Ma, W., Zhao, J., Zhang, H., & Chen, W. (2012a). A study of the power absorption and temperature distribution during microwave reheating of instant rice. International Journal of Food Science & Technology, 47, 640–647.

    Article  CAS  Google Scholar 

  • Fan, D., Ma, S., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2012b). Effect of microwave heating on optical and thermal properties of rice starch. Starch-Stärke, 64, 740–744.

    Article  CAS  Google Scholar 

  • Fan, D., Ma, W., Wang, L., Huang, J., Zhao, J., Zhang, H., & Chen, W. (2012c). Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch-Stärke, 64, 598–606.

    Article  CAS  Google Scholar 

  • Fan, D., Ma, S., Wang, L., Zhao, H., Zhao, J., Zhang, H., & Chen, W. (2013a). 1 H NMR studies of starch–water interactions during microwave heating. Carbohydrate Polymers, 97, 406–412.

    Article  CAS  Google Scholar 

  • Fan, D., Ma, W., Wang, L., Huang, J., Zhang, F., Zhao, J., Zhang, H., & Chen, W. (2013b). Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydrate Polymers, 92, 1395–1401.

    Article  CAS  Google Scholar 

  • Fan, D., Wang, L., Ma, S., Ma, W., Liu, X., Huang, J., Zhao, J., Zhang, H., & Chen, W. (2013c). Structural variation of rice starch in response to temperature during microwave heating before gelatinisation. Carbohydrate Polymers, 92, 1249–1255.

    Article  CAS  Google Scholar 

  • Fan, D., Wang, L., Chen, W., Ma, S., Ma, W., Liu, X., Zhao, J., & Zhang, H. (2014). Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocolloids, 35, 620–626.

    Article  CAS  Google Scholar 

  • Fan, D., Liu, Y., Hu, B., Lin, L., Huang, L., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2016). Influence of microwave parameters and water activity on radical generation in rice starch. Food Chemistry, 196, 34–41.

    Article  CAS  Google Scholar 

  • Genkina, N. K., Wasserman, L. A., Noda, T., Tester, R. F., & Yuryev, V. P. (2004). Effects of annealing on the polymorphic structure of starches from sweet potatoes (Ayamurasaki and Sunnyred cultivars) grown at various soil temperatures. Carbohydrate Research, 339, 1093–1098.

    Article  CAS  Google Scholar 

  • Gonzalez, Z., & Perez, E. (2002). Evaluation of lentil starches modified by microwave irradiation and extrusion cooking. Food Research International, 35, 415–420.

    Article  CAS  Google Scholar 

  • Gunaratne, A., & Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49, 425–437.

    Article  CAS  Google Scholar 

  • Jiang, Q., Xu, X., Jin, Z., Tian, Y., Hu, X., & Bai, Y. (2011). Physico-chemical properties of rice starch gels: Effect of different heat treatments. Journal of Food Engineering, 107, 353–357.

    Article  CAS  Google Scholar 

  • Lee, E. Y., Lim, K. I., Lim, J.-k., & Lim, S.-T. (2000). Effects of gelatinization and moisture content of extruded starch pellets on morphology and physical properties of microwave-expanded products. Cereal Chemistry, 77, 769–773.

    Article  CAS  Google Scholar 

  • Lee, S., Sandhu, K. S., & Lim, S. (2007). Effect of microwave irradiation on crystallinity and pasting viscosity of corn starches different in amylose content. Food Science and Biotechnology, 16, 832–835.

    CAS  Google Scholar 

  • Lewandowicz, G., Fornal, J., & Walkowski, A. (1997). Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydrate Polymers, 34, 213–220.

    Article  CAS  Google Scholar 

  • Lewandowicz, G., Fornal, J., Walkowski, A., Mączyński, M., Urbaniak, G., & Szymańska, G. (2000a). Starch esters obtained by microwave radiation – structure and functionality. Industrial Crops and Products, 11, 249–257.

    Article  CAS  Google Scholar 

  • Lewandowicz, G., Jankowski, T., & Fornal, J. (2000b). Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers, 42, 193–199.

    Article  CAS  Google Scholar 

  • Li, J., Han, W., Xu, J., Xiong, S., & Zhao, S. (2014). Comparison of morphological changes and in vitro starch digestibility of rice cooked by microwave and conductive heating. Starch – Stärke, 66, 549–557.

    Article  CAS  Google Scholar 

  • Lin, Q., Pan, J., Lin, Q., & Liu, Q. (2013). Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere. Journal of Hazardous Materials, 263(Part 2), 517–524.

    Article  CAS  Google Scholar 

  • Lopez-Rubio, A., Flanagan, B. M., Shrestha, A. K., Gidley, M. J., & Gilbert, E. P. (2008). Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules, 9, 1951–1958.

    Article  CAS  Google Scholar 

  • Lukasiewicz, M., & Kowalski, S. (2012). Low power microwave-assisted enzymatic esterification of starch. Starch-Stärke, 64, 188–197.

    Article  CAS  Google Scholar 

  • Luo, Z., He, X., Fu, X., Luo, F., & Gao, Q. (2006). Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch-Stärke, 58, 468–474.

    Article  CAS  Google Scholar 

  • Luu, T. D., Phan, N. H., Tran, T. T.-D., Van Vo, T., & Tran, P. H.-L. (2015). Use of microwave method for controlling drug release of modified sprouted rice starch. In 5th International Conference on Biomedical Engineering in Vietnam. Coference. Springer.

    Google Scholar 

  • Ma, S., Fan, D., Wang, L., Lian, H., Zhao, J., Zhang, H., & Chen, W. (2015). The impact of microwave heating on the granule state and thermal properties of potato starch. Starch-Stärke, 67, 391–398.

    Article  CAS  Google Scholar 

  • Maache-Rezzoug, Z., Zarguili, I., Loisel, C., Queveau, D., & Buléon, A. (2008). Structural modifications and thermal transitions of standard maize starch after DIC hydrothermal treatment. Carbohydrate Polymers, 74, 802–812.

    Article  CAS  Google Scholar 

  • Malafaya, P., Elvira, C., Gallardo, A., San Roman, J., & Reis, R. (2001). Porous starch-based drug delivery systems processed by a microwave route. Journal of Biomaterials Science, Polymer Edition, 12, 1227–1241.

    Article  CAS  Google Scholar 

  • Mollekopf, N., Treppe, K., Fiala, P., & Dixit, O. (2011). Vacuum microwave treatment of potato starch and the resultant modification of properties. Chemie Ingenieur Technik, 83, 262–272.

    Article  CAS  Google Scholar 

  • Mudgett, R. E. (1986). Microwave properties and heating characteristics of foods. Food Technology (USA), 40, 99–105.

    Google Scholar 

  • Palav, T., & Seetharaman, K. (2006). Mechanism of starch gelatinization and polymer leaching during microwave heating. Carbohydrate Polymers, 65, 364–370.

    Article  CAS  Google Scholar 

  • Palav, T., & Seetharaman, K. (2007). Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydrate Polymers, 67, 596–604.

    Article  CAS  Google Scholar 

  • Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H., & Awuah, G. (2003). Radio frequency heating of foods: Principles, applications and related properties – a review. Critical Reviews in Food Science and Nutrition, 43, 587–606.

    Article  Google Scholar 

  • Rivero, I. E., Balsamo, V., & Müller, A. J. (2009). Microwave-assisted modification of starch for compatibilizing LLDPE/starch blends. Carbohydrate Polymers, 75, 343–350.

    Article  CAS  Google Scholar 

  • Román, L., Martínez, M. M., Rosell, C. M., & Gómez, M. (2015). Effect of microwave treatment on physicochemical properties of maize flour. Food and Bioprocess Technology, 8, 1330–1335.

    Article  Google Scholar 

  • Shah, U., Gani, A., Ashwar, B. A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Effect of infrared and microwave radiations on properties of Indian horse chestnut starch. International Journal of Biological Macromolecules, 84, 166–173.

    Article  CAS  Google Scholar 

  • Stevenson, D. G., Biswas, A., & Inglett, G. E. (2005). Thermal and pasting properties of microwaved corn starch. Starch-Stärke, 57, 347–353.

    Article  CAS  Google Scholar 

  • Sumnu, G. (2001). A review on microwave baking of foods. International Journal of Food Science & Technology, 36, 117–127.

    Article  CAS  Google Scholar 

  • Szepes, A., Hasznos-Nezdei, M., Kovács, J., Funke, Z., Ulrich, J., & Szabó-Révész, P. (2005). Microwave processing of natural biopolymers – studies on the properties of different starches. International Journal of Parmaceutics, 302, 166–171.

    Article  CAS  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products – a review. Biosystems Engineering, 98, 1–16.

    Article  Google Scholar 

  • Villière, A., Cravotto, G., Vibert, R., Perrier, A., Lassi, U., Lévêque, J.-M. (2015). Production of glucose from starch-based waste employing ultrasound and/or microwave irradiation. In Production of biofuels and chemicals with ultrasound (pp. 289–315). Dordrecht: Springer.

    Google Scholar 

  • Xue, C., Sakai, N., & Fukuoka, M. (2008). Use of microwave heating to control the degree of starch gelatinization in noodles. Journal of Food Engineering, 87, 357–362.

    Article  Google Scholar 

  • Zeng, S., Chen, B., Zeng, H., Guo, Z., Lu, X., Zhang, Y., & Zheng, B. (2016). Effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. Journal of Agricultural and Food Chemistry, 64, 2442–2449.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Z. W., & Shi, X. M. (2009). Effect of microwave heat/moisture treatment on physicochemical properties of Canna edulis Ker starch. Journal of the Science of Food and Agriculture, 89, 653–664.

    Article  CAS  Google Scholar 

  • Zhang, J., Chen, F., Liu, F., & Wang, Z.-W. (2010). Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocolloids, 24, 27–34.

    Article  Google Scholar 

  • Zhongdong, L., Peng, L., & Kennedy, J. F. (2005). The technology of molecular manipulation and modification assisted by microwaves as applied to starch granules. Carbohydrate Polymers, 61, 374–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, K. (2018). Microwave Treatment. In: Sui, Z., Kong, X. (eds) Physical Modifications of Starch. Springer, Singapore. https://doi.org/10.1007/978-981-13-0725-6_6

Download citation

Publish with us

Policies and ethics