Skip to main content

Nanoinformatics: Predicting Toxicity Using Computational Modeling

  • Chapter
  • First Online:
Computational Intelligence and Big Data Analytics

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSFOMEBI))

Abstract

The various potential properties of nanomaterials make them prominent for most of the applications, used in our day-to-day life. Due to increase in the use of the nanomaterials, it is anticipated that the manufacturing and use of engineered nanoparticles (NP) will also grow rapidly. These engineered nanoparticles became toxic sometimes during the process of manufacturing as well as utilizing. Hence, there is a vital requirement for early recognition of toxic nature of these nanoparticles. Computational modelling is an effective approach for the same, which predicts toxicity on the basis of previous experimental data or molecular properties. QSAR is an emerging process to envision the toxicity based on their molecular structure properties. The various data mining techniques can accelerate this computation task and help in accurate and fast toxicity prediction. This paper leads the readers to work in this area, by providing a groundwork of the data, tools, and techniques used, along with future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maojo V, Fritts M, de la Iglesia D, Cachau RE, Garcia-Remesal M, Mitchell JA, Kulikowski C (2012) Nanoinformatics: a new area of research in nanomedicine. Int J Nanomed 7:3867–3890. https://doi.org/10.2147/IJN.S24582 PMID:22866003

    Article  Google Scholar 

  2. Oksel C, Ma CY, Liu JJ, Wilkins T, Wang XZ (2017) Literature Review of (Q) SAR modelling of nanomaterial toxicity. In: Modelling the toxicity of nanoparticles. Springer International Publishing, Basel, pp 103–142

    Google Scholar 

  3. OECD (2010) guidance manual for the testing of manufactured nanomaterials: OECD’s Sponsorship Programme. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  4. Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50

    Article  Google Scholar 

  5. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  Google Scholar 

  6. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  Google Scholar 

  7. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles a comparison between nano-and micrometer size. Toxicol Lett 188:112–118

    Article  Google Scholar 

  8. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618

    Article  Google Scholar 

  9. Zhao CM, Wang WX (2012) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6(4):361–370

    Article  Google Scholar 

  10. Park YH, Bae HC, Jang Y, Jeong SH, Lee HN, Ryu WI et al (2013) Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol 9(1):67–74

    Article  Google Scholar 

  11. Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25

    Article  Google Scholar 

  12. Caballero-Díaz E, Pfeiffer C, Kastl L, Rivera-Gil P, Simonet B, Valcárcel M et al (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085

    Article  Google Scholar 

  13. Nguyen KC, Seligy VL, Massarsky A, Moon TW, Rippstein P, Tan J, Tayabali AF (2013) Comparison of toxicity of uncoated and coated silver nanoparticles. In: Journal of Physics: Conference Series, vol 429, No 1. IOP Publishing, Bristol, p 012025

    Google Scholar 

  14. Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127

    Article  Google Scholar 

  15. Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  Google Scholar 

  16. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Particle Fibre Toxicol 7(1):39

    Article  Google Scholar 

  17. Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Nel A et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. https://doi.org/10.1021/nn3010087 PMID:22502734

    Article  Google Scholar 

  18. Novel Descriptor for Reactivity http://cordis.europa.eu/documents/documentlibrary/116810441EN6.pdf

  19. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Electrophilicity index as a possible descriptor of biological activity. Bioorg Med Chem 12(21):5533–5543

    Article  Google Scholar 

  20. Sizochenko N, Leszczynski J (2016) Review of current and emerging approaches for quantitative nanostructure-activity relationship modeling: the case of inorganic nanoparticles. J Nanotoxicol Nanomed (JNN) 1(1):1–16

    Article  Google Scholar 

  21. Yosefu NO (2015) Computational modelling for prediction of nanomaterial toxicity. Doctoral dissertation, Makerere University

    Google Scholar 

  22. Oksel C, Ma CY, Liu JJ, Wilkins T, Wang XZ (2015) (Q) SAR modelling of nanomaterial toxicity: a critical review. Particuology 21:1–19

    Article  Google Scholar 

  23. Gu C, Goodarzi M, Yang X, Bian Y, Sun C, Jiang X (2012) Predictive insight into the relationship between AhR binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR. Toxicol Lett 208:269–274

    Article  Google Scholar 

  24. Shahlaei M (2013) Descriptor selection methods in quantitative structure? activity relationship studies: a review study. Chem Rev 113:8093–8103

    Article  Google Scholar 

  25. Yee LC, Wei YC (2012) Current modeling methods used in QSAR/QSPR. Assessment 10:11

    Google Scholar 

  26. Bengio Y, Delalleau O, Simard C (2010) Decision trees do not generalize to new variations. Comput Intell 26:449–467

    Article  MathSciNet  Google Scholar 

  27. Wang XZ, Ma CY (2009) Morphological population balance model in principal component space. AIChE J 55:2370–2381

    Article  Google Scholar 

  28. Darnag R, Minaoui B, Fakir M (2012) QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression. Arab J Chem

    Google Scholar 

  29. Mei H, Zhou Y, Liang G, Li Z (2005) Support vector machine applied in QSAR modelling. Chin Sci Bull 50:2291–2296

    Article  Google Scholar 

  30. Sussillo D, Barak O (2013) Opening the black box: low-dimensional dynamics in high- dimensional recurrent neural networks. Neural Comput 25:626–649

    Article  MathSciNet  Google Scholar 

  31. Ventura C, Latino DA, Martins F (2013) Comparison of multiple linear regressions and neural networks based QSAR models for the design of new antitubercular compounds. Eur J Med Chem 70:831–845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavna Saini .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, B., Srivastava, S. (2019). Nanoinformatics: Predicting Toxicity Using Computational Modeling. In: Computational Intelligence and Big Data Analytics. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-0544-3_6

Download citation

Publish with us

Policies and ethics