Skip to main content

SETting up Methylation in Mammalian Cells: Role of Histone Methyltransferases in Disease and Development

  • Chapter
  • First Online:
Gene and Cell Therapy: Biology and Applications

Abstract

Epigenetics is now being heralded as a science that can bring change with momentous potential. The development and maintenance of any organism is formulated by certain chemical reactions that modulate parts of the genome at specific intervals involving the remodeling of chromatin. Understanding how chromatin remodeling can selectively activate or inactivate genes and subsequently influence pathogenesis and the outcome of many diseases becomes critical. Epigenetics provides us with the perception to look into the genetic process, the biological role of chromatin-associated proteins, and how alterations in epigenetic factors have majorly impacted human disease and development.

Modern views on epigenetic regulation driving the current attention of researchers in academia and industry are focused toward understanding epigenetic alterations implicated in maintenance of diverse biological processes such as DNA methylation, posttranslational histone tail modifications (PTMs), noncoding RNA control of chromatin structure, and nucleosome remodeling. Methylation of histones has associated with chromatin since long, and the histone methyltransferases since their discovery have been tied solely to chromatin structure and function by influencing transcriptional activation and repression in mammalian cells. Targeting these enzymes tied to histone methylation involved in many debilitating diseases like cancer by designing small-molecule inhibitors against them has shown potential as promising modes of therapy and treatment. This chapter will highlight the central roles of histone methyltransferases as potent epigenetic regulators modulating transcription and how their perturbations have severe repercussions in human disease and development particularly affecting cellular pluripotency and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266

    Article  PubMed  CAS  Google Scholar 

  2. Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159(2):458–4e1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Biel M, Wascholowski V, Giannis A (2005) Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem 44(21):3186–3216

    Article  CAS  Google Scholar 

  5. Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15(10):1122–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    Article  PubMed  CAS  Google Scholar 

  7. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13(16):3822–3831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jones RS, Gelbart WM (1993) The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol Cell Biol 13(10):6357–6366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Stassen MJ, Bailey D, Nelson S, Chinwalla V, Harte PJ (1995) The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech Dev 52(2-3):209–223

    Article  PubMed  CAS  Google Scholar 

  10. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    Article  PubMed  CAS  Google Scholar 

  14. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC et al (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 20(18):5232–5241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411

    Article  PubMed  CAS  Google Scholar 

  16. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  PubMed  CAS  Google Scholar 

  17. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74

    Article  PubMed  CAS  Google Scholar 

  18. Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR et al (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15(3):245–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  PubMed  CAS  Google Scholar 

  20. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142(5):682–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci 63(23):2755–2763

    Article  PubMed  CAS  Google Scholar 

  22. Richon VM, Johnston D, Sneeringer CJ, Jin L, Majer CR, Elliston K et al (2011) Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des 78(2):199–210

    Article  PubMed  CAS  Google Scholar 

  23. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28(6):329–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6(11):838–849

    Article  PubMed  CAS  Google Scholar 

  26. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6(8):731–740

    Article  PubMed  CAS  Google Scholar 

  28. Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277(34):30421–30424

    Article  PubMed  CAS  Google Scholar 

  30. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058

    Article  PubMed  CAS  Google Scholar 

  31. Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL et al (2008) Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 283(18):12085–12092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sakaguchi A, Karachentsev D, Seth-Pasricha M, Druzhinina M, Steward R (2008) Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase. Genetics 179(1):317–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15(1):57–67

    Article  PubMed  CAS  Google Scholar 

  35. Hohenauer T, Moore AW (2012) The Prdm family: expanding roles in stem cells and development. Development 139(13):2267–2282

    Article  PubMed  CAS  Google Scholar 

  36. Yi X, Jiang XJ, Li XY, Jiang DS (2015) Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res 7(11):2159–2175

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF et al (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598

    Article  PubMed  CAS  Google Scholar 

  39. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H et al (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T et al (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876):103–107

    Article  PubMed  CAS  Google Scholar 

  41. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17(15):1870–1881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sampath SC, Marazzi I, Yap KL, Sampath SC, Krutchinsky AN, Mecklenbrauker I et al (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27(4):596–608

    Article  PubMed  CAS  Google Scholar 

  43. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36(1):94–99

    Article  PubMed  CAS  Google Scholar 

  45. Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12(6):1577–1589

    Article  PubMed  CAS  Google Scholar 

  46. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wagschal A, Sutherland HG, Woodfine K, Henckel A, Chebli K, Schulz R et al (2008) G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol 28(3):1104–1113

    Article  PubMed  CAS  Google Scholar 

  48. Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R et al (2008) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 4(6):344–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296(5570):1132–1136

    Article  PubMed  CAS  Google Scholar 

  50. Bian C, Chen Q, Yu X (2015) The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression. Elife 4

    Google Scholar 

  51. Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B et al (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12(2):475–487

    Article  PubMed  CAS  Google Scholar 

  52. Falandry C, Fourel G, Galy V, Ristriani T, Horard B, Bensimon E et al (2010) CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem 285(26):20234–20241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Clouaire T, de Las Heras JI, Merusi C, Stancheva I (2010) Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res 38(14):4620–4634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24(6):2478–2486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–931

    Article  PubMed  CAS  Google Scholar 

  56. Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8(6):676–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cosgrove MS, Patel A (2010) Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J 277(8):1832–1842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ansari KI, Mandal SS (2010) Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J 277(8):1790–1804

    Article  PubMed  CAS  Google Scholar 

  59. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450

    Article  PubMed  CAS  Google Scholar 

  60. Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    Article  PubMed  CAS  Google Scholar 

  61. Malik S, Bhaumik SR (2010) Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS J 277(8):1805–1821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL et al (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13(8):713–719

    Article  PubMed  CAS  Google Scholar 

  63. Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605

    Article  PubMed  CAS  Google Scholar 

  64. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592

    Article  PubMed  CAS  Google Scholar 

  65. Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812

    Article  PubMed  CAS  Google Scholar 

  66. Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L et al (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 22(12):3153–3163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Schneider R, Bannister AJ, Kouzarides T (2002) Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 27(8):396–402

    Article  PubMed  CAS  Google Scholar 

  68. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572

    Article  PubMed  CAS  Google Scholar 

  69. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV et al (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31(1):25–32

    Article  PubMed  CAS  Google Scholar 

  70. Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C et al (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150(2):613–632

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285(5):3341–3350

    Article  PubMed  CAS  Google Scholar 

  72. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S et al (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4(9):e1000190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Anglin JL, Song Y (2013) A medicinal chemistry perspective for targeting histone H3 lysine-79 methyltransferase DOT1L. J Med Chem 56(22):8972–8983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Karachentsev D, Sarma K, Reinberg D, Steward R (2005) PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev 19(4):431–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li Z, Nie F, Wang S, Li L (2011) Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci U S A 108(8):3116–3123

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C et al (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 12(11):1086–1093

    Article  PubMed  CAS  Google Scholar 

  77. Jorgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MS, Kousholt AN et al (2011) SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. J Cell Biol 192(1):43–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON et al (2007) The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 179(7):1337–1345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Huen MS, Sy SM, van Deursen JM, Chen J (2008) Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 283(17):11073–11077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A et al (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40(1):22–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A (2010) CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell 40(1):9–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E et al (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22(15):2048–2061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J et al (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  PubMed  CAS  Google Scholar 

  87. Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42(3):330–341

    Article  PubMed  CAS  Google Scholar 

  88. Wu H, Chen X, Xiong J, Li Y, Li H, Ding X et al (2011) Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res 21(2):365–367

    Article  PubMed  CAS  Google Scholar 

  89. Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C et al (2014) The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53(2):277–289

    Article  PubMed  CAS  Google Scholar 

  90. Martin-Perez D, Piris MA, Sanchez-Beato M (2010) Polycomb proteins in hematologic malignancies. Blood 116(25):5465–5475

    Article  PubMed  CAS  Google Scholar 

  91. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136(6):1122–1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32(4):491–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P et al (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16(4):479–489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Pradhan S, Chin HG, Esteve PO, Jacobsen SE (2009) SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics 4(6):383–387

    Article  PubMed  CAS  Google Scholar 

  95. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    Article  PubMed  CAS  Google Scholar 

  96. Couture JF, Collazo E, Hauk G, Trievel RC (2006) Structural basis for the methylation site specificity of SET7/9. Nat Struct Mol Biol 13(2):140–146

    Article  PubMed  CAS  Google Scholar 

  97. Abbondanza C, Medici N, Nigro V, Rossi V, Gallo L, Piluso G et al (2000) The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action. Proc Natl Acad Sci U S A 97(7):3130–3135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD (2007) Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 7:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM et al (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150(5):948–960

    Article  PubMed  CAS  Google Scholar 

  100. Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T et al (2009) Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. J Biol Chem 284(13):8395–8405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T (2000) Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol Cell Biol 20(10):3728–3741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41(2):246–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951

    Article  PubMed  CAS  Google Scholar 

  104. Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P et al (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150(5):934–947

    Article  PubMed  CAS  Google Scholar 

  105. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H et al (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153(1):178–192

    Article  PubMed  CAS  Google Scholar 

  106. Yokochi T, Poduch K, Ryba T, Lu J, Hiratani I, Tachibana M et al (2009) G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc Natl Acad Sci U S A 106(46):19363–19368

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ambler RP, Rees MW (1959) Epsilon-N-Methyl-lysine in bacterial flagellar protein. Nature 184:56–57

    Article  PubMed  CAS  Google Scholar 

  108. Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  PubMed  CAS  Google Scholar 

  109. Tong SW, Elzinga M (1983) The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J Biol Chem 258(21):13100–13110

    PubMed  CAS  Google Scholar 

  110. L’Italien JJ, Laursen RA (1979) Location of the site of methylation in elongation factor Tu. FEBS Lett 107(2):359–362

    Article  PubMed  Google Scholar 

  111. Hardy MF, Perry SV (1969) In vitro methylation of muscle proteins. Nature 223(5203):300–302

    Article  PubMed  CAS  Google Scholar 

  112. Hardy M, Harris I, Perry SV, Stone D (1970) Epsilon-N-monomethyl-lysine and trimethyl-lysine in myosin. Biochem J 117(2):44P–45P

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. DeLange RJ, Glazer AN, Smith EL (1969) Presence and location of an unusual amino acid, epsilon-N-trimethyllysine, in cytochrome c of wheat germ and Neurospora. J Biol Chem 244(5):1385–1388

    CAS  PubMed  Google Scholar 

  114. Bloxham DP, Parmelee DC, Kumar S, Wade RD, Ericsson LH, Neurath H et al (1981) Primary structure of porcine heart citrate synthase. Proc Natl Acad Sci U S A 78(9):5381–5385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ames GF, Niakido K (1979) In vivo methylation of prokaryotic elongation factor Tu. J Biol Chem 254(20):9947–9950

    CAS  PubMed  Google Scholar 

  116. Dhami GK, Liu H, Galka M, Voss C, Wei R, Muranko K et al (2013) Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis. Mol Cell 50(4):565–576

    Article  PubMed  CAS  Google Scholar 

  117. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P et al (2011) Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 12(1):29–36

    Article  PubMed  CAS  Google Scholar 

  118. Tuzon CT, Spektor T, Kong X, Congdon LM, Wu S, Schotta G et al (2014) Concerted activities of distinct H4K20 methyltransferases at DNA double-strand breaks regulate 53BP1 nucleation and NHEJ-directed repair. Cell Rep 8(2):430–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Boisvert FM, Rhie A, Richard S, Doherty AJ (2005) The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4(12):1834–1841

    Article  PubMed  CAS  Google Scholar 

  120. Liu H, Galka M, Mori E, Liu X, Lin YF, Wei R et al (2013) A method for systematic mapping of protein lysine methylation identifies functions for HP1beta in DNA damage response. Mol Cell 50(5):723–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387

    Article  PubMed  CAS  Google Scholar 

  122. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15(8):536–550

    Article  PubMed  CAS  Google Scholar 

  123. Carlson SM, Moore KE, Green EM, Martin GM, Gozani O (2014) Proteome-wide enrichment of proteins modified by lysine methylation. Nat Protoc 9(1):37–50

    Article  PubMed  CAS  Google Scholar 

  124. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270

    Article  PubMed  CAS  Google Scholar 

  125. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17

    Article  PubMed  CAS  Google Scholar 

  126. Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S et al (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510(7504):283–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50

    Article  PubMed  CAS  Google Scholar 

  128. Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ (2014) Targeting histone lysine demethylases - progress, challenges, and the future. Biochim Biophys Acta 1839(12):1416–1432

    Article  PubMed  CAS  Google Scholar 

  129. Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815(1):75–89

    CAS  PubMed  Google Scholar 

  130. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M et al (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449(7158):105–108

    Article  PubMed  CAS  Google Scholar 

  131. Cui G, Park S, Badeaux AI, Kim D, Lee J, Thompson JR et al (2012) PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Nat Struct Mol Biol 19(9):916–924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F et al (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27(19):6756–6769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al (2004) Regulation of p53 activity through lysine methylation. Nature 432(7015):353–360

    Article  PubMed  CAS  Google Scholar 

  134. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B et al (2011) The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 43(4):681–688

    Article  PubMed  CAS  Google Scholar 

  135. Huang J, Dorsey J, Chuikov S, Perez-Burgos L, Zhang X, Jenuwein T et al (2010) G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 285(13):9636–9641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Chen L, Li Z, Zwolinska AK, Smith MA, Cross B, Koomen J et al (2010) MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO J 29(15):2538–2552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW et al (2007) Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 27(4):636–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Munro S, Khaire N, Inche A, Carr S, La Thangue NB (2010) Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29(16):2357–2367

    Article  PubMed  CAS  Google Scholar 

  139. Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB (2011) Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 30(2):317–327

    Article  PubMed  CAS  Google Scholar 

  140. Saddic LA, West LE, Aslanian A, Yates JR 3rd, Rubin SM, Gozani O et al (2010) Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285(48):37733–37740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2012) A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med 237(12):1387–1393

    Article  CAS  Google Scholar 

  142. Kontaki H, Talianidis I (2010) Lysine methylation regulates E2F1-induced cell death. Mol Cell 39(1):152–160

    Article  PubMed  CAS  Google Scholar 

  143. Ea CK, Baltimore D (2009) Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci U S A 106(45):18972–18977

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF (2009) Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 28(8):1055–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M et al (2010) Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci U S A 107(1):46–51

    Article  PubMed  Google Scholar 

  146. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I (2004) Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 14(2):175–182

    Article  PubMed  CAS  Google Scholar 

  147. Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B et al (2010) Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 107(50):21499–21504

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N et al (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23(6):839–852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H et al (2012) Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep 13(4):371–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH et al (2013) Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell 26(2):188–194

    Article  PubMed  CAS  Google Scholar 

  151. He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P et al (2012) PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26(1):37–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Choi SY, Jang H, Roe JS, Kim ST, Cho EJ, Youn HD (2013) Phosphorylation and ubiquitination-dependent degradation of CABIN1 releases p53 for transactivation upon genotoxic stress. Nucleic Acids Res 41(4):2180–2190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH et al (2012) Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci U S A 109(3):841–846

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ et al (2008) G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. J Biol Chem 283(39):26357–26363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM et al (2010) Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 39(1):71–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Nair SS, Li DQ, Kumar R (2013) A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell 49(4):704–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lee JM, Lee JS, Kim H, Kim K, Park H, Kim JY et al (2012) EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 48(4):572–586

    Article  PubMed  CAS  Google Scholar 

  158. Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M et al (2011) Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res 71(3):655–660

    Article  PubMed  CAS  Google Scholar 

  159. Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18(1):111–120

    Article  PubMed  CAS  Google Scholar 

  160. Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B (2011) Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol 25(3):433–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Balasubramaniyan N, Ananthanarayanan M, Suchy FJ (2012) Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol 302(9):G937–G947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D et al (2008) Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 30(3):336–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Hwang YJ, Han D, Kim KY, Min SJ, Kowall NW, Yang L et al (2014) ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res 42(3):1628–1643

    Article  PubMed  CAS  Google Scholar 

  164. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA et al (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106(13):5076–5081

    Article  PubMed  PubMed Central  Google Scholar 

  165. Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A et al (2011) MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2:533

    Article  PubMed  CAS  Google Scholar 

  166. Wang D, Zhou J, Liu X, Lu D, Shen C, Du Y et al (2013) Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc Natl Acad Sci U S A 110(14):5516–5521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Chin HG, Esteve PO, Pradhan M, Benner J, Patnaik D, Carey MF et al (2007) Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res 35(21):7313–7323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Masatsugu T, Yamamoto K (2009) Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem Biophys Res Commun 381(1):22–26

    Article  PubMed  CAS  Google Scholar 

  169. Liu L, Sun B, Pedersen JN, Aw Yong KM, Getzenberg RH, Stone HA et al (2011) Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. Proc Natl Acad Sci U S A 108(17):6853–6856

    Article  PubMed  PubMed Central  Google Scholar 

  170. Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C et al (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A 107(45):19266–19271

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sewalt RG, Lachner M, Vargas M, Hamer KM, den Blaauwen JL, Hendrix T et al (2002) Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol Cell Biol 22(15):5539–5553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Takawa M, Cho HS, Hayami S, Toyokawa G, Kogure M, Yamane Y et al (2012) Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res 72(13):3217–3227

    Article  PubMed  CAS  Google Scholar 

  173. Kassner I, Andersson A, Fey M, Tomas M, Ferrando-May E, Hottiger MO (2013) SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress. Open Biol 3(10):120173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Cloutier P, Lavallee-Adam M, Faubert D, Blanchette M, Coulombe B (2013) A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet 9(1):e1003210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kunizaki M, Hamamoto R, Silva FP, Yamaguchi K, Nagayasu T, Shibuya M et al (2007) The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res 67(22):10759–10765

    Article  PubMed  CAS  Google Scholar 

  176. Van Duyne R, Easley R, Wu W, Berro R, Pedati C, Klase Z et al (2008) Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W et al (2010) The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7(3):234–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D et al (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol 3(5):301–308

    Article  PubMed  CAS  Google Scholar 

  179. Cho HS, Shimazu T, Toyokawa G, Daigo Y, Maehara Y, Hayami S et al (2012) Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. Nat Commun 3:1072

    Article  PubMed  CAS  Google Scholar 

  180. Levy D, Liu CL, Yang Z, Newman AM, Alizadeh AA, Utz PJ et al (2011) A proteomic approach for the identification of novel lysine methyltransferase substrates. Epigenetics Chromatin 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Sitaramayya A, Wright LS, Siegel FL (1980) Enzymatic methylation of calmodulin in rat brain cytosol. J Biol Chem 255(18):8894–8900

    PubMed  CAS  Google Scholar 

  182. Lübbert M, Jones PA (2013) Epigenetic therapy of cancer: preclinical models and treatment approaches. Springer, Berlin/Heidelberg

    Google Scholar 

  183. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    Article  PubMed  CAS  Google Scholar 

  184. Weidinger G (1995) Pharmacokinetic and pharmacodynamic properties and therapeutic use of bunazosin in hypertension. A review. Arzneimittelforschung 45(11):1166–1171

    PubMed  CAS  Google Scholar 

  185. Liu F, Chen X, Allali-Hassani A, Quinn AM, Wasney GA, Dong A et al (2009) Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem 52(24):7950–7953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V et al (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7(8):566–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Chang Y, Ganesh T, Horton JR, Spannhoff A, Liu J, Sun A et al (2010) Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J Mol Biol 400(1):1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang XP et al (2013) Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J Med Chem 56(21):8931–8942

    Article  PubMed  CAS  Google Scholar 

  189. Pappano WN, Guo J, He Y, Ferguson D, Jagadeeswaran S, Osterling DJ et al (2015) The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia. PLoS One 10(7):e0131716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ et al (2012) A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem Biol 7(7):1152–1157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK et al (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8(6):1579–1588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8(11):890–896

    Article  PubMed  CAS  Google Scholar 

  193. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112

    Article  PubMed  CAS  Google Scholar 

  194. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C et al (2011) Structural basis of substrate methylation and inhibition of SMYD2. Structure 19(9):1262–1273

    Article  PubMed  CAS  Google Scholar 

  196. Nguyen KT, Li F, Poda G, Smil D, Vedadi M, Schapira M (2013) Strategy to target the substrate binding site of SET domain protein methyltransferases. J Chem Inf Model 53(3):681–691

    Article  PubMed  CAS  Google Scholar 

  197. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1-2):21–29

    Article  PubMed  CAS  Google Scholar 

  198. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100(20):11606–11611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Kang MY, Lee BB, Kim YH, Chang DK, Kyu Park S, Chun HK et al (2007) Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int J Cancer 121(10):2192–2197

    Article  PubMed  CAS  Google Scholar 

  200. O’Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR, Laible G et al (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20(24):9423–9433

    Article  PubMed  PubMed Central  Google Scholar 

  201. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71(4):701–708

    Article  PubMed  CAS  Google Scholar 

  202. Liedtke M, Cleary ML (2009) Therapeutic targeting of MLL. Blood 113(24):6061–6068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Tkachuk DC, Kohler S, Cleary ML (1992) Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71(4):691–700

    Article  PubMed  CAS  Google Scholar 

  204. Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16(1):92–106

    Article  PubMed  CAS  Google Scholar 

  205. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    Article  PubMed  CAS  Google Scholar 

  206. Kim JY, Kee HJ, Choe NW, Kim SM, Eom GH, Baek HJ et al (2008) Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity. Mol Cell Biol 28(6):2023–2034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q et al (2008) The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111(2):856–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P (2001) NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 74(1):79–88

    Article  PubMed  CAS  Google Scholar 

  209. Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T et al (2002) NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood 99(10):3857–3860

    Article  PubMed  CAS  Google Scholar 

  210. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y et al (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97(2):113–118

    Article  PubMed  CAS  Google Scholar 

  211. Cho HS, Kelly JD, Hayami S, Toyokawa G, Takawa M, Yoshimatsu M et al (2011) Enhanced expression of EHMT2 is involved in the proliferation of cancer cells through negative regulation of SIAH1. Neoplasia 13(8):676–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR et al (2008) Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One 3(4):e2037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66(18):9009–9016

    Article  PubMed  CAS  Google Scholar 

  214. Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A 107(36):15957–15962

    Article  PubMed  PubMed Central  Google Scholar 

  215. Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S (2008) Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26(11):2875–2883

    Article  PubMed  CAS  Google Scholar 

  216. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J et al (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458(7237):529–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419

    Article  PubMed  CAS  Google Scholar 

  218. Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G et al (2008) The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3(8):e3034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F et al (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447(7144):601–605

    Article  PubMed  CAS  Google Scholar 

  220. Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, Bahari-Javan S, Benito-Garagorri E et al (2013) Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci 33(8):3452–3464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD et al (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Gupta-Agarwal S, Franklin AV, Deramus T, Wheelock M, Davis RL, McMahon LL et al (2012) G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32(16):5440–5453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Schaefer A, Sampath SC, Intrator A, Min A, Gertler TS, Surmeier DJ et al (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64(5):678–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25(8):781–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Tzeng TY, Lee CH, Chan LW, Shen CK (2007) Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. Proc Natl Acad Sci U S A 104(31):12691–12696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A et al (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79(2):370–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, de Brouwer AP et al (2005) Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42(4):299–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Nillesen WM, Yntema HG, Moscarda M, Verbeek NE, Wilson LC, Cowan F et al (2011) Characterization of a novel transcript of the EHMT1 gene reveals important diagnostic implications for Kleefstra syndrome. Hum Mutat 32(7):853–859

    Article  PubMed  CAS  Google Scholar 

  229. Balemans MC, Huibers MM, Eikelenboom NW, Kuipers AJ, van Summeren RC, Pijpers MM et al (2010) Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav Brain Res 208(1):47–55

    Article  PubMed  CAS  Google Scholar 

  230. Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M et al (2016) Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron 91(2):341–355

    Article  PubMed  CAS  Google Scholar 

  232. Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci U S A 103(50):19176–19181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K (2013) EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat Neurosci 16(12):1745–1753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90(4):498–510

    Article  PubMed  CAS  Google Scholar 

  235. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  PubMed  CAS  Google Scholar 

  237. Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136(2):200–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Kimura M, Koseki Y, Yamashita M, Watanabe N, Shimizu C, Katsumoto T et al (2001) Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15(2):275–287

    Article  PubMed  CAS  Google Scholar 

  239. Koyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M (2005) EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem 280(36):31470–31477

    Article  PubMed  CAS  Google Scholar 

  240. Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY et al (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24(5):611–622

    Article  PubMed  CAS  Google Scholar 

  241. Yamashita M, Shinnakasu R, Nigo Y, Kimura M, Hasegawa A, Taniguchi M et al (2004) Interleukin (IL)-4-independent maintenance of histone modification of the IL-4 gene loci in memory Th2 cells. J Biol Chem 279(38):39454–39464

    Article  PubMed  CAS  Google Scholar 

  242. Araki Y, Wang Z, Zang C, Wood WH 3rd, Schones D, Cui K et al (2009) Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30(6):912–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1):155–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT et al (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487(7406):249–253

    Article  PubMed  CAS  Google Scholar 

  245. Suzuki A, Iwamura C, Shinoda K, Tumes DJ, Kimura MY, Hosokawa H et al (2010) Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. J Immunol 184(8):4510–4520

    Article  PubMed  CAS  Google Scholar 

  246. Yamashita M, Kuwahara M, Suzuki A, Hirahara K, Shinnaksu R, Hosokawa H et al (2008) Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med 205(5):1109–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC et al (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207(5):915–922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 16(3):286–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874

    Article  PubMed  CAS  Google Scholar 

  250. Xia M, Liu J, Wu X, Liu S, Li G, Han C et al (2013) Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 39(3):470–481

    Article  PubMed  CAS  Google Scholar 

  251. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799

    Article  PubMed  CAS  Google Scholar 

  252. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280(18):17732–17736

    Article  PubMed  CAS  Google Scholar 

  253. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745

    Article  PubMed  CAS  Google Scholar 

  254. Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS et al (2011) Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 9(1):24–36

    Article  PubMed  CAS  Google Scholar 

  255. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R et al (2012) A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151(1):221–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E et al (2013) Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12(2):224–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  PubMed  CAS  Google Scholar 

  258. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5):479–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X et al (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152(3):642–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q et al (2014) The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev 23(9):931–940

    Article  PubMed  CAS  Google Scholar 

  262. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483(7391):598–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L et al (2010) ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6(6):547–556

    Article  PubMed  CAS  Google Scholar 

  264. Rao RA, Dhele N, Cheemadan S, Ketkar A, Jayandharan GR, Palakodeti D et al (2015) Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci Rep 5:8229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  266. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2(6):525–528

    Article  PubMed  CAS  Google Scholar 

  267. Ma DK, Chiang CH, Ponnusamy K, Ming GL, Song H (2008) G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26(8):2131–2141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S et al (2013) Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev 130(11-12):519–531

    Article  PubMed  CAS  Google Scholar 

  269. Katoh K, Yamazaki R, Onishi A, Sanuki R, Furukawa T (2012) G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells. J Neurosci 32(49):17658–17670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  270. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504(7478):163–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26(14):3346–3359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Wang L, Xu S, Lee JE, Baldridge A, Grullon S, Peng W et al (2013) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32(1):45–59

    Article  PubMed  CAS  Google Scholar 

  273. Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J et al (2008) De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15(11):1176–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y et al (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194

    Article  PubMed  CAS  Google Scholar 

  275. Yamamizu K, Fujihara M, Tachibana M, Katayama S, Takahashi A, Hara E et al (2012) Protein kinase A determines timing of early differentiation through epigenetic regulation with G9a. Cell Stem Cell 10(6):759–770

    Article  PubMed  CAS  Google Scholar 

  276. Chen X, Skutt-Kakaria K, Davison J, Ou YL, Choi E, Malik P et al (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev 26(22):2499–2511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J et al (2015) Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29(4):379–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Article  PubMed  CAS  Google Scholar 

  279. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  PubMed  CAS  Google Scholar 

  281. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  PubMed  CAS  Google Scholar 

  282. Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S et al (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276(35):32971–32976

    Article  PubMed  CAS  Google Scholar 

  283. Yang Y, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C et al (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 6:6428

    Article  PubMed  CAS  Google Scholar 

  284. Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288(52):37010–37025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120(Pt 24):4243–4246

    Article  PubMed  CAS  Google Scholar 

  287. Gary JD, Clarke S (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 61:65–131

    Article  PubMed  CAS  Google Scholar 

  288. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Lee DY, Teyssier C, Strahl BD, Stallcup MR (2005) Role of protein methylation in regulation of transcription. Endocr Rev 26(2):147–170

    Article  PubMed  CAS  Google Scholar 

  290. Lajer M, Tarnow L, Jorsal A, Teerlink T, Parving HH, Rossing P (2008) Plasma concentration of asymmetric dimethylarginine (ADMA) predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 31(4):747–752

    Article  PubMed  CAS  Google Scholar 

  291. Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271(25):15034–15044

    Article  PubMed  CAS  Google Scholar 

  292. Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR et al (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275(11):7723–7730

    Article  PubMed  CAS  Google Scholar 

  293. Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE (2000) Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20(13):4859–4869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293(5531):853–857

    Article  PubMed  CAS  Google Scholar 

  295. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117(6):735–748

    Article  PubMed  CAS  Google Scholar 

  296. Boisvert FM, Dery U, Masson JY, Richard S (2005) Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19(6):671–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Sun Q, Liu L, Roth M, Tian J, He Q, Zhong B et al (2015) PRMT1 Upregulated by Epithelial Proinflammatory Cytokines Participates in COX2 Expression in Fibroblasts and Chronic Antigen-Induced Pulmonary Inflammation. J Immunol 195(1):298–306

    Article  PubMed  CAS  Google Scholar 

  298. Raptis V, Kapoulas S, Grekas D (2013) Role of asymmetrical dimethylarginine in the progression of renal disease. Nephrology 18(1):11–21

    Article  PubMed  CAS  Google Scholar 

  299. Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF (1998) Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48(3):330–340

    Article  PubMed  CAS  Google Scholar 

  300. Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282(50):36444–36453

    Article  PubMed  CAS  Google Scholar 

  301. Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421(2):253–261

    Article  PubMed  CAS  Google Scholar 

  302. Meyer R, Wolf SS, Obendorf M (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107(1-2):1–14

    Article  PubMed  CAS  Google Scholar 

  303. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu YJ (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277(32):28624–28630

    Article  PubMed  CAS  Google Scholar 

  304. Ganesh L, Yoshimoto T, Moorthy NC, Akahata W, Boehm M, Nabel EG et al (2006) Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol Cell Biol 26(10):3864–3874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Zhong J, Cao RX, Hong T, Yang J, Zu XY, Xiao XH et al (2011) Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene 487(1):1–9

    Article  PubMed  CAS  Google Scholar 

  306. Yildirim AO, Bulau P, Zakrzewicz D, Kitowska KE, Weissmann N, Grimminger F et al (2006) Increased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases. Am J Respir Cell Mol Biol 35(4):436–443

    Article  PubMed  CAS  Google Scholar 

  307. Tang J, Gary JD, Clarke S, Herschman HR (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273(27):16935–16945

    Article  PubMed  CAS  Google Scholar 

  308. Swiercz R, Person MD, Bedford MT (2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem J 386(Pt 1):85–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Chen X, Niroomand F, Liu Z, Zankl A, Katus HA, Jahn L et al (2006) Expression of nitric oxide related enzymes in coronary heart disease. Basic Res Cardiol 101(4):346–353

    Article  PubMed  CAS  Google Scholar 

  310. Matsuguma K, Ueda S, Yamagishi S, Matsumoto Y, Kaneyuki U, Shibata R et al (2006) Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J Am Soc Nephrol 17(8):2176–2183

    Article  PubMed  CAS  Google Scholar 

  311. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    Article  PubMed  CAS  Google Scholar 

  312. Cheng D, Cote J, Shaaban S, Bedford MT (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell 25(1):71–83

    Article  PubMed  CAS  Google Scholar 

  313. Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM et al (2003) Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci U S A 100(11):6464–6468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Kim J, Lee J, Yadav N, Wu Q, Carter C, Richard S et al (2004) Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J Biol Chem 279(24):25339–25344

    Article  PubMed  CAS  Google Scholar 

  315. Yadav N, Cheng D, Richard S, Morel M, Iyer VR, Aldaz CM et al (2008) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9(2):193–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Ito T, Yadav N, Lee J, Furumatsu T, Yamashita S, Yoshida K et al (2009) Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification. BMC Dev Biol 9:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. O’Brien KB, Alberich-Jorda M, Yadav N, Kocher O, Diruscio A, Ebralidze A et al (2010) CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137(13):2147–2156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH et al (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3(7):641–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Pollack BP, Kotenko SV, He W, Izotova LS, Barnoski BL, Pestka S (1999) The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 274(44):31531–31542

    Article  PubMed  CAS  Google Scholar 

  320. Lacroix M, El Messaoudi S, Rodier G, Le Cam A, Sardet C, Fabbrizio E (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9(5):452–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD et al (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 28(10):3198–3207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Cesaro E, De Cegli R, Medugno L, Florio F, Grosso M, Lupo A et al (2009) The Kruppel-like zinc finger protein ZNF224 recruits the arginine methyltransferase PRMT5 on the transcriptional repressor complex of the aldolase A gene. J Biol Chem 284(47):32321–32330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Tabata T, Kokura K, Ten Dijke P, Ishii S (2009) Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 14(1):17–28

    Article  PubMed  CAS  Google Scholar 

  324. Rank G, Cerruti L, Simpson RJ, Moritz RL, Jane SM, Zhao Q (2010) Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 116(9):1585–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Neuenkirchen N, Chari A, Fischer U (2008) Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 582(14):1997–2003

    Article  PubMed  CAS  Google Scholar 

  326. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S et al (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15):1749–1762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z (2012) Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS One 7(8):e44033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Bode-Boger SM, Scalera F, Kielstein JT, Martens-Lobenhoffer J, Breithardt G, Fobker M et al (2006) Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 17(4):1128–1134

    Article  PubMed  CAS  Google Scholar 

  329. Ratovitski T, Arbez N, Stewart JC, Chighladze E, Ross CA (2015) PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle 14(11):1716–1729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Quan X, Yue W, Luo Y, Cao J, Wang H, Wang Y et al (2015) The protein arginine methyltransferase PRMT5 regulates Abeta-induced toxicity in human cells and Caenorhabditis elegans models of Alzheimer’s disease. J Neurochem 134(5):969–977

    Article  PubMed  CAS  Google Scholar 

  331. Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277(5):3537–3543

    Article  PubMed  CAS  Google Scholar 

  332. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164):933–937

    Article  PubMed  CAS  Google Scholar 

  333. Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21(24):3369–3380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Michaud-Levesque J, Richard S (2009) Thrombospondin-1 is a transcriptional repression target of PRMT6. J Biol Chem 284(32):21338–21346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Xie B, Invernizzi CF, Richard S, Wainberg MA (2007) Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J Virol 81(8):4226–4234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Zakrzewicz D, Zakrzewicz A, Preissner KT, Markart P, Wygrecka M (2012) Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 13(10):12383–12400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Miranda TB, Miranda M, Frankel A, Clarke S (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279(22):22902–22907

    Article  PubMed  CAS  Google Scholar 

  338. Bleibel WK, Duan S, Huang RS, Kistner EO, Shukla SJ, Wu X et al (2009) Identification of genomic regions contributing to etoposide-induced cytotoxicity. Hum Genet 125(2):173–180

    Article  PubMed  CAS  Google Scholar 

  339. Gros L, Delaporte C, Frey S, Decesse J, de Saint-Vincent BR, Cavarec L et al (2003) Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res 63(1):164–171

    PubMed  CAS  Google Scholar 

  340. Verbiest V, Montaudon D, Tautu MT, Moukarzel J, Portail JP, Markovits J et al (2008) Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett 582(10):1483–1489

    Article  PubMed  CAS  Google Scholar 

  341. Zheng Z, Schmidt-Ott KM, Chua S, Foster KA, Frankel RZ, Pavlidis P et al (2005) A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. Proc Natl Acad Sci U S A 102(7):2502–2507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  342. Jelinic P, Stehle JC, Shaw P (2006) The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4(11):e355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Buhr N, Carapito C, Schaeffer C, Kieffer E, Van Dorsselaer A, Viville S (2008) Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells. Electrophoresis 29(11):2381–2390

    Article  PubMed  CAS  Google Scholar 

  344. Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J et al (2014) PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res 74(19):5656–5667

    Article  PubMed  CAS  Google Scholar 

  345. Lee J, Sayegh J, Daniel J, Clarke S, Bedford MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280(38):32890–32896

    Article  PubMed  CAS  Google Scholar 

  346. Hung CM, Li C (2004) Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene 340(2):179–187

    Article  PubMed  CAS  Google Scholar 

  347. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134(2-3):117–131

    Article  PubMed  CAS  Google Scholar 

  348. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  PubMed  CAS  Google Scholar 

  349. Yost JM, Korboukh I, Liu F, Gao C, Jin J (2011) Targets in epigenetics: inhibiting the methyl writers of the histone code. Curr Chem Genom 5(Suppl 1):72–84

    Article  CAS  Google Scholar 

  350. Vu LP, Perna F, Wang L, Voza F, Figueroa ME, Tempst P et al (2013) PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Rep 5(6):1625–1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S et al (2008) Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22(5):640–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  352. Cho EC, Zheng S, Munro S, Liu G, Carr SM, Moehlenbrink J et al (2012) Arginine methylation controls growth regulation by E2F-1. EMBO J 31(7):1785–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S et al (2013) Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52(1):37–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  354. Mitchell TR, Glenfield K, Jeyanthan K, Zhu XD (2009) Arginine methylation regulates telomere length and stability. Mol Cell Biol 29(18):4918–4934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Tang J, Kao PN, Herschman HR (2000) Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275(26):19866–19876

    Article  PubMed  CAS  Google Scholar 

  356. Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K et al (2008) Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 31(2):212–221

    Article  PubMed  CAS  Google Scholar 

  357. Jobert L, Argentini M, Tora L (2009) PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res 315(7):1273–1286

    Article  PubMed  CAS  Google Scholar 

  358. Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavailles V (2010) Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 21(3):181–189

    Article  PubMed  CAS  Google Scholar 

  359. Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S (2011) Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 36(12):633–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Bandyopadhyay S, Harris DP, Adams GN, Lause GE, McHugh A, Tillmaand EG et al (2012) HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 32(7):1202–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB et al (2013) PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci U S A 110(33):13516–13521

    Article  PubMed  PubMed Central  Google Scholar 

  362. Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A et al (2014) CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25(1):21–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  363. Sgarra R, Lee J, Tessari MA, Altamura S, Spolaore B, Giancotti V et al (2006) The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J Biol Chem 281(7):3764–3772

    Article  PubMed  CAS  Google Scholar 

  364. El-Andaloussi N, Valovka T, Toueille M, Steinacher R, Focke F, Gehrig P et al (2006) Arginine methylation regulates DNA polymerase beta. Mol Cell 22(1):51–62

    Article  PubMed  CAS  Google Scholar 

  365. Lee J, Bedford MT (2002) PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep 3(3):268–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  366. Yang M, Sun J, Sun X, Shen Q, Gao Z, Yang C (2009) Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis. PLoS Genet 5(6):e1000514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  367. Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T et al (2014) Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 5:3480

    Article  PubMed  CAS  Google Scholar 

  368. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K et al (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279(48):49571–49574

    Article  PubMed  CAS  Google Scholar 

  369. Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA et al (2005) Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79(1):124–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  370. Abramovich C, Yakobson B, Chebath J, Revel M (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J 16(2):260–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Infantino S, Benz B, Waldmann T, Jung M, Schneider R, Reth M (2010) Arginine methylation of the B cell antigen receptor promotes differentiation. J Exp Med 207(4):711–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Martin G, Ostareck-Lederer A, Chari A, Neuenkirchen N, Dettwiler S, Blank D et al (2010) Arginine methylation in subunits of mammalian pre-mRNA cleavage factor I. RNA 16(8):1646–1659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  373. Baldwin GS, Carnegie PR (1971) Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science 171(3971):579–581

    Article  PubMed  CAS  Google Scholar 

  374. Butler JS, Zurita-Lopez CI, Clarke SG, Bedford MT, Dent SY (2011) Protein-arginine methyltransferase 1 (PRMT1) methylates Ash2L, a shared component of mammalian histone H3K4 methyltransferase complexes. J Biol Chem 286(14):12234–12244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  375. Powers MA, Fay MM, Factor RE, Welm AL, Ullman KS (2011) Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res 71(16):5579–5587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  376. Rajpurohit R, Lee SO, Park JO, Paik WK, Kim S (1994) Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1. Dual substrate specificity for S-adenosylmethionine:histone-arginine N-methyltransferase. J Biol Chem 269(2):1075–1082

    CAS  PubMed  Google Scholar 

  377. Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B et al (2003) Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11(4):1055–1066

    Article  PubMed  CAS  Google Scholar 

  378. Herrmann F, Bossert M, Schwander A, Akgun E, Fackelmayer FO (2004) Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1. J Biol Chem 279(47):48774–48779

    Article  PubMed  CAS  Google Scholar 

  379. Dolzhanskaya N, Merz G, Denman RB (2006) Alternative splicing modulates protein arginine methyltransferase-dependent methylation of fragile X syndrome mental retardation protein. Biochemistry 45(34):10385–10393

    Article  PubMed  CAS  Google Scholar 

  380. Rho J, Choi S, Jung CR, Im DS (2007) Arginine methylation of Sam68 and SLM proteins negatively regulates their poly(U) RNA binding activity. Arch Biochem Biophys 466(1):49–57

    Article  PubMed  CAS  Google Scholar 

  381. Swiercz R, Cheng D, Kim D, Bedford MT (2007) Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem 282(23):16917–16923

    Article  PubMed  CAS  Google Scholar 

  382. Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Luhrmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275(22):17122–17129

    Article  PubMed  CAS  Google Scholar 

  383. Shire K, Kapoor P, Jiang K, Hing MN, Sivachandran N, Nguyen T et al (2006) Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80(11):5261–5272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. Barth S, Liss M, Voss MD, Dobner T, Fischer U, Meister G et al (2003) Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 77(8):5008–5013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Kim JD, Kako K, Kakiuchi M, Park GG, Fukamizu A (2008) EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int J Mol Med 22(3):309–315

    CAS  PubMed  Google Scholar 

  386. Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford MT (2004) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279(23):23892–23899

    Article  PubMed  CAS  Google Scholar 

  387. Spannhoff A, Heinke R, Bauer I, Trojer P, Metzger E, Gust R et al (2007) Target-based approach to inhibitors of histone arginine methyltransferases. J Med Chem 50(10):2319–2325

    Article  PubMed  CAS  Google Scholar 

  388. Yu XR, Tang Y, Wang WJ, Ji S, Ma S, Zhong L et al (2015) Discovery and structure-activity analysis of 4-((5-nitropyrimidin-4-yl)amino)benzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Bioorg Med Chem Lett 25(22):5449–5453

    Article  PubMed  CAS  Google Scholar 

  389. Spannhoff A, Machmur R, Heinke R, Trojer P, Bauer I, Brosch G et al (2007) A novel arginine methyltransferase inhibitor with cellular activity. Bioorg Med Chem Lett 17(15):4150–4153

    Article  PubMed  CAS  Google Scholar 

  390. Sinha SH, Owens EA, Feng Y, Yang Y, Xie Y, Tu Y et al (2012) Synthesis and evaluation of carbocyanine dyes as PRMT inhibitors and imaging agents. Eur J Med Chem 54:647–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Yan L, Yan C, Qian K, Su H, Kofsky-Wofford SA, Lee WC et al (2014) Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 57(6):2611–2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  392. Purandare AV, Chen Z, Huynh T, Pang S, Geng J, Vaccaro W et al (2008) Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 18(15):4438–4441

    Article  PubMed  CAS  Google Scholar 

  393. Henikoff S, Shilatifard A (2011) Histone modification: cause or cog? Trends Genet 27(10):389–396

    Article  PubMed  CAS  Google Scholar 

  394. Rathert P, Dhayalan A, Ma H, Jeltsch A (2008) Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins. Mol BioSyst 4(12):1186–1190

    Article  PubMed  CAS  Google Scholar 

  395. Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587

    Article  PubMed  CAS  Google Scholar 

  396. Moore KE, Carlson SM, Camp ND, Cheung P, James RG, Chua KF et al (2013) A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 50(3):444–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  397. Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1(2):119–126

    Article  PubMed  CAS  Google Scholar 

  398. Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T (2013) Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Mol BioSyst 9(9):2231–2247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shravanti Rampalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, A., Rampalli, S. (2018). SETting up Methylation in Mammalian Cells: Role of Histone Methyltransferases in Disease and Development. In: Jayandharan, G. (eds) Gene and Cell Therapy: Biology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0481-1_7

Download citation

Publish with us

Policies and ethics