Skip to main content

Viral- and Non-viral-Based Hybrid Vectors for Gene Therapy

  • Chapter
  • First Online:
Gene and Cell Therapy: Biology and Applications

Abstract

Gene therapy offers a great potential for the treatment of genetic diseases as well as acquired diseases by means of delivering therapeutic nucleic acids inside the cell. To deliver nucleic acids, broadly two strategies have been employed by using viral vectors and non-viral vectors. The viral vectors exhibited high transduction efficacy both in vitro and in vivo. The non-viral vectors composed of mainly cationic polymers and lipids which provide efficient condensing capability against negatively charged nucleic acids and low cytotoxicity. Till date, >2300 clinical trials for gene therapy are going on worldwide, approximately 70% using viral vectors and remaining with non-viral vectors. The immunogenicity, non-targeting abilities are the biggest hurdles in terms of safety and efficiency for successful therapy with these vectors. These two classes of vectors have their own advantages as well as disadvantages which hinder their therapeutic endpoint in clinical trials. Now, researchers have made attempts to form virus encapsulated in chemical vectors which are called as hybrid vectors. These hybrid vectors have immense potential to evade host immune system by masking the immunogenic epitopes present on viral vectors. The molecules or scaffold which is used for encapsulating virus enhance their targeting ability and sustained release to targeted tissue. The hybrid vectors, combination of viral and chemical vectors, form a new class of gene delivery vectors which overcome the limitations of each vector and simultaneously augment desirable features such as targeting ability, low immunogenicity, cytotoxicity, higher payload, and ability to deliver more than one transgene. The hybrid vectors should retain characteristics of the each vector in order to achieve optimal tissue targeting and gene delivery with minimal toxicity. To achieve therapeutic endpoint with the hybrid vectors, development of such hybrid vectors requires extensive understanding of physicochemical properties after coating virus with chemical analogues and their optimal ratio as well. These aspects will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Chen C (2016) Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 103:76–89

    Article  PubMed  CAS  Google Scholar 

  2. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33(11):621–636

    Article  PubMed  CAS  Google Scholar 

  3. Fukuda T, Nakajima M, Kojima M (2010) Micro-Nano robotics and automation system. IFAC Proceedings Volumes 43(8):20–25

    Article  Google Scholar 

  4. Segev-Bar M, Haick H (2013) Flexible sensors based on nanoparticles. ACS Nano 7(10):8366–8378

    Article  PubMed  CAS  Google Scholar 

  5. Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(2):219–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Petrov A, Audette GF (2012) Peptide and protein-based nanotubes for nanobiotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5):575–585

    Article  PubMed  CAS  Google Scholar 

  7. Jin S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23(1):32–41

    Article  PubMed  CAS  Google Scholar 

  8. Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine 8(5):773–784

    Article  PubMed  CAS  Google Scholar 

  9. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Silva JM, Videira M, Gaspar R, Preat V, Florindo HF (2013) Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 168(2):179–199

    Article  PubMed  CAS  Google Scholar 

  11. Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 110(9):3270–3275

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fortina P, Kricka LJ, Surrey S, Grodzinski P (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 23(4):168–173

    Article  PubMed  CAS  Google Scholar 

  13. Rawat M, Singh D, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Article  PubMed  CAS  Google Scholar 

  14. http://www.abedia.com/wiley/phases.php

  15. Manno CS, Pierce GF (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–347

    Article  PubMed  CAS  Google Scholar 

  16. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20(2):443–455

    Article  PubMed  CAS  Google Scholar 

  17. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee PY, Wong KK (2011) Nanomedicine: a new frontier in cancer therapeutics. Curr Drug Deliv 8(3):245–253

    Article  PubMed  CAS  Google Scholar 

  19. Reetz J, Herchenroder O, Putzer BM (2014) Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 6(4):1540–1563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Anderson WF (2000) Gene therapy. The best of times, the worst of times. Science 288(5466):627–629

    Article  PubMed  CAS  Google Scholar 

  21. Setlow JK (2003) Genetic engineering: principles and methods. Springer, New York

    Google Scholar 

  22. Hackett NR, Crystal RG (2004) Gene and cell therapy: therapeutic mechanisms and strategies, 2nd edn (ed: Templeton NS). Merkel Dekker, Inc, Texas

    Google Scholar 

  23. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, Taylor G, Walden S, Wetzel R (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 7(9):1145–1159

    Article  PubMed  CAS  Google Scholar 

  24. Nathwani AC, Tuddenham EG, Rangarajan S et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22:625–655

    Article  PubMed  CAS  Google Scholar 

  27. D’Costa J, Mansfield SG, Humeau LM (2009) Lentiviral vectors in clinical trials: current status. Curr Opin Mol Ther 11(5):554–564

    PubMed  Google Scholar 

  28. Kim J, Kim PH, Kim SW, Yun CO (2012) Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials 33(6):1838–1850

    Article  PubMed  CAS  Google Scholar 

  29. Kim J, Li Y, Kim SW, Lee DS, Yun CO (2013) Therapeutic efficacy of a systemically delivered oncolytic adenovirus–biodegradable polymer complex. Biomaterials 34(19):4622–4631

    Article  PubMed  CAS  Google Scholar 

  30. Jung SJ, Kasala D, Choi JW, Lee SH, Hwang JK, Kim SW, Yun CO (2015) Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model. Biomacromolecules 16(1):87–96

    Article  PubMed  CAS  Google Scholar 

  31. Kim PH, Kim J, Kim TI, Nam HY, Yockman JW, Kim M, Kim SW, Yun CO (2011) Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration. Biomaterials 32(35):9328–9342

    Article  PubMed  CAS  Google Scholar 

  32. Kim J, Kim PH, Nam HY, Lee JS, Yun CO, Kim SW (2012) Linearized oncolytic adenoviral plasmid DNA delivered by bioreducible polymers. J Control Release 158(3):451–460

    Article  PubMed  CAS  Google Scholar 

  33. Park H, Kim PH, Hwang T, Kim J, Kim TI, Nam HY, Yockman JW, Kim M, Kim SW, Yun CO (2012) Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. Int J Pharm 427(2):417–425

    Article  PubMed  CAS  Google Scholar 

  34. Park Y, Kang E, Kwon OJ, Hwang T, Park H, Lee JM, Kim JH, CO Y (2010) Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Control Release 148(1):75–82

    Article  PubMed  CAS  Google Scholar 

  35. Park Y, Kang E, Kwon OJ, Park HK, Kim JH, Yun CO (2010) Tumor targeted adenovirus nanocomplex ionically crosslinked by chitosan. J Control Release 148(1):e124

    Article  PubMed  CAS  Google Scholar 

  36. Kwon OJ, Kang E, Choi JW, Kim SW, Yun CO (2013) Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release 169(3):257–265

    Article  PubMed  CAS  Google Scholar 

  37. Lee CH, Kasala D, Na Y, Lee MS, Kim SW, Jeong JH, Yun CO (2014) Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression. Biomaterials 35(21):5505–5516

    Article  PubMed  CAS  Google Scholar 

  38. Choi JW, Nam JP, Nam K, Lee YS, Yun CO, Kim SW (2015) Oncolytic adenovirus coated with multidegradable bioreducible core-cross-linked polyethylenimine for cancer gene therapy. Biomacromolecules 16(7):2132–2143

    Article  PubMed  CAS  Google Scholar 

  39. Kim PH, Kim TI, Yockman JW, Kim SW, CO Y (2010) The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials 31(7):1865–1874

    Article  PubMed  CAS  Google Scholar 

  40. Kim J, Nam HY, Kim TI, Kim PH, Jihoon R, Yun CO, Kim SW (2011) Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA. Biomaterials 32(22):5158–5166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim PH, Sohn JH, Choi JW, Jung Y, Kim SW, Haam S, Yun CO (2011) Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. Biomaterials 32(9):2314–2326

    Article  PubMed  CAS  Google Scholar 

  42. Choi JW, Kim J, Bui QN, Li Y, Chae-Ok Yun CO, Lee DS, Kim SW (2015) Tuning surface charge and PEGylation of biocompatible polymers for efficient delivery of nucleic acid or adenoviral vector. Bioconjug Chem 26(8):1818–1829

    Article  PubMed  CAS  Google Scholar 

  43. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  PubMed  CAS  Google Scholar 

  44. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  PubMed  CAS  Google Scholar 

  45. Grunwald GK, Vetter A, Klutz K, Kathrin K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Wagner E, Göke B, Holm PS, Ogris M, Spitzweg C (2013) Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J Nucl Med 54(8):1450–1457

    Article  PubMed  CAS  Google Scholar 

  46. Grunwald GK, Vetter A, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch- Schmidtke R, Schwaiger M, Zach C, Wagner E, Goke B, Holm PS, Ogris M, Spitzweg C (2013) EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol Ther Nucleic Acids 2(11):e131. https://doi.org/10.1038/mtna.2013.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Heise CC, Williams AM, Xue S, Propst M, Kirn DH (1999) Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 59(11):2623–2628

    PubMed  CAS  Google Scholar 

  48. Liu TC, Galanis E, Kirn D (2007) Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 4(2):101–117

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto M, Curiel DT (2010) Current issues and future directions of oncolytic adenoviruses. Mol Ther 18(2):243–250

    Article  PubMed  CAS  Google Scholar 

  50. Yotnda P, Chen DH, Chiu W, Piedra PA, Davis A, Templeton NS, Brenner MK (2002) Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 5(3):233–241

    Article  PubMed  CAS  Google Scholar 

  51. Mendez N, Herrera V, Zhang L, Hedjran F, Feuer R, Blair SL, Trogler WC, Reid TR, Kummel AC (2014) Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials 35(35):9554–9561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shin S, Shea LD (2010) Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol Ther 18(4):700–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kidd ME, Shin S, Shea LD (2013) Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release 157(1):80–85

    Article  CAS  Google Scholar 

  54. Kim JS, Chu HS, Park KI, Won JI, Jang JH (2012) Elastin-like polypeptide matrices for enhancing adeno-associated virus mediated gene delivery to human neural stem cells. Gene Ther 19(3):329–337

    Article  PubMed  CAS  Google Scholar 

  55. Hwang JH, Lee S, Kim E, Kim JS, Lee CH, Ahn IS, Jang JH (2011) Heparin-coated superparamagnetic nanoparticle-mediated adeno-associated virus delivery for enhancing cellular transduction. Int J Pharm 421(2):397–404

    Article  PubMed  CAS  Google Scholar 

  56. Chrastina A, Massey KA, Schnitzer JE (2013) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437

    Article  CAS  Google Scholar 

  57. Kunugi S, Yamaoka T, Akagi T, Baba M, Akashi M (2012) Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. In: Polymers in Nanomedicine. Springer, Berlin/Heidelberg, pp 31–64

    Google Scholar 

  58. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    Article  PubMed  CAS  Google Scholar 

  59. Lee LA, Wang Q (2006) Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2(3):137–149

    Article  PubMed  CAS  Google Scholar 

  60. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q (2009) Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunother 32(2):118–128

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hubbell JA, Thomas SN, Swartz MA (2009) Materials engineering for immunomodulation. Nature 462(7272):449–460

    Article  PubMed  CAS  Google Scholar 

  63. Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers R, Hall JC, Ramesh GT (2011) Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem 286(34):29725–29733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shi J, Sun X, Lin Y, Zou X, Li Z, Liao Y, Du M, Zhang H (2014) Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-kappaB pathways. Biomaterials 35(24):6657–6666

    Article  PubMed  CAS  Google Scholar 

  65. Klippstein R, Pozo D (2010) Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed Nanotechnol Biol Med 6(4):523–529

    Article  CAS  Google Scholar 

  66. Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6(6):476–483

    Article  PubMed  CAS  Google Scholar 

  67. Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135

    Article  PubMed  CAS  Google Scholar 

  68. Nair-Gupta P, Blander JM (2013) An updated view of the intracellular mechanisms regulating cross-presentation. Front Immunol 4:401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10(6):403–414

    Article  PubMed  CAS  Google Scholar 

  70. Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, Mellor AL (2012) Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol 188(10):4913–4920

    Article  PubMed  CAS  Google Scholar 

  71. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, Bo T, Napier ME, Ting JP, Desimone JM, Bear JE (2013) Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest 123(7):3061–3073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Frecha C, Szecsi J, Cosset FL, Verhoeyen E (2008) Strategies for targeting lentiviral vectors. Curr Gene Ther 8(6):449–460

    Article  PubMed  CAS  Google Scholar 

  74. Knight S, Collins M, Takeuchi Y (2013) Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther 13(3):211–227

    Article  PubMed  CAS  Google Scholar 

  75. Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437

    Article  PubMed  CAS  Google Scholar 

  76. Gupta AS, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE (2005) RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 93(1):106–114

    PubMed  Google Scholar 

  77. Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, Gupta AS (2008) Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 29(11):1676–1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Srinivasan R, Marchant RE, Gupta AS (2009) In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A 93(3):1004–1015

    Google Scholar 

  79. Dabbas S, Kaushik RR, Dandamudi S, Kuesters GM, Campbell RB (2008) Importance of the liposomal cationic lipid content and type in tumor vascular targeting: physicochemical characterization and in vitro studies using human primary and transformed endothelial cells. Endothelium 15(4):189–201

    Article  PubMed  CAS  Google Scholar 

  80. Juliano RL, Hsu MJ, Peterson D, Regen SL, Singh A (1983) Interactions of conventional or photopolymerized liposomes with platelets in vitro. Exp Cell Res 146(2):422–427

    Article  PubMed  CAS  Google Scholar 

  81. Constantinescu I, Levin E, Gyongyossy-Issa M (2003) Liposomes and blood cells: a flow cytometric study. Artif Cells Blood Substit Immobil Biotechnol 31(4):395–424

    Article  PubMed  CAS  Google Scholar 

  82. Kwon YJ, Standley SM, Goh SL, Frechet JM (2005) Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release 105(3):199–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Nordly P, Rose F, Christensen D, Nielsen HM, Andersen P, Agger EM, Foged C (2010) Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 150(3):307–317

    Article  PubMed  CAS  Google Scholar 

  84. Lewis JS, Zaveri TD, Crooks CP, Keselowsky BG (2012) Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials 33(29):7221–7232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hirota K, Hasegawa T, Nakajima T, Makino K, Terada H (2011) Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages. Colloids Surf B Biointerfaces 87(2):293–298

    Article  PubMed  CAS  Google Scholar 

  86. Liu Y, Fang Y, Zhou Y, Zandi E, Lee CL, Joo KI, Wang P (2013) Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde tag. Small 9(3):421–429

    Article  PubMed  CAS  Google Scholar 

  87. Lee S, Kim JS, Chu HS, Kim GW, Won JI, Jang JH (2011) Electrospun nanofibrous scaffolds for controlled release of adeno-associated viral vectors. Acta Biomater 7(11):3868–3876

    Article  PubMed  CAS  Google Scholar 

  88. Lee WK, Park JY, Jung S, Ballester-Antxordoki L, Perez-Temprano N, Rojas E, Sanz D, Iglesias-Gaspar M, Moya S, Gonzalez-Fernandez A, Rey M (2005) Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction. J Control Release 105(1–2):77–88

    Article  PubMed  CAS  Google Scholar 

  89. Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U (2011) Multistability in platelets and their response to gold nanoparticles. Nanomedicine 7(4):376–384

    Article  PubMed  CAS  Google Scholar 

  90. Lozano-Fernandez T, Ballester-Antxordoki L, Perez-Temprano N, Ballester-Antxordoki L, Perez-Temprano N, Rojas E, Sanz D, Iglesias-Gaspar M, Moya S, Gonzalez-Fernandez A, Rey M (2014) Potential impact of metal oxide nanoparticles on the immune system: the role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine 10(6):1301–1310

    Article  PubMed  CAS  Google Scholar 

  91. Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW (2011) Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomedicine 6:2821–2835

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 31(32):8198–8209

    Article  PubMed  CAS  Google Scholar 

  93. Pondman KM, Sobik M, Nayak A, Tsolaki AG, Jakel A, Flahaut E, Hampel S, Ten Haken B, Sim RB (2014) Kishore U complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 10(6):1287–1299

    Article  PubMed  CAS  Google Scholar 

  94. Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP (2009) Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl Pharmacol 236(3):319–328

    Article  PubMed  CAS  Google Scholar 

  95. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Barregard L, Sallsten G, Andersson L, Almstrand AC, Gustafson P, Andersson M, Olin AC (2008) Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup Environ Med 65(5):319–324

    Article  PubMed  CAS  Google Scholar 

  97. Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B (2003) Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107(8):1202–1208

    Article  PubMed  Google Scholar 

  98. Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE (2011) Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine 7(2):245–256

    Article  PubMed  CAS  Google Scholar 

  99. Li C, Hirsch M, DiPrimio N, Asokan A, Goudy K, Tisch R, Samulski RJ (2009) Cytotoxic-T-lymphocyte-mediated elimination of target cells transduced with engineered adeno-associated virus type 2 vector in vivo. J Virol 83(13):6817–6824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pourazar J, Mudway IS, Samet JM, Helleday R, Blomberg A, Wilson SJ, Frew AJ, Kelly FJ, Sandstrom T (2005) Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am J Physiol Lung Cell Mol Physiol 289(5):L724–L730

    Article  PubMed  CAS  Google Scholar 

  101. Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, Frew A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999;159(3):702–709

    Google Scholar 

  102. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, Baeza-Squiban A (2003) Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285(3):L671–L679

    Article  PubMed  CAS  Google Scholar 

  103. Alfaro-Moreno E, Nawrot TS, Nemmar A, Nemery B (2007) Particulate matter in the environment: pulmonary and cardiovascular effects. Curr Opin Pulm Med 13(2):98–106

    Article  PubMed  Google Scholar 

  104. Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, Castranova V, Koyama S, Kim YA, Endo M, Simeonova PP (2009) Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9(1):36–43

    Article  PubMed  CAS  Google Scholar 

  105. Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL (2007) Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromolecules 8(12):3853–3859

    Article  PubMed  CAS  Google Scholar 

  106. Jones CF, Campbell RA, Franks Z, Gibson CC, Thiagarajan G, Vieira-de-Abreu A et al (2012) Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm 9(6):1599–1611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bartneck M, Peters FM, Warzecha KT, Warzecha KT, Bienert M, van Bloois L, Trautwein C, Lammers T, Tacke F (2013) Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine 10(6):1209–1220

    Article  CAS  Google Scholar 

  108. Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert JM (2014) Cationic lipid nanocarriers activate toll-like receptor 2 and NLRP3 inflammasome pathways. Nanomedicine 10(4):775–782

    Article  PubMed  CAS  Google Scholar 

  109. Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E (2009) The role of nanoparticle size in hemocompatibility. Toxicology 258(2–3):139–147

    Article  PubMed  CAS  Google Scholar 

  110. Dube A, Reynolds JL, Law WC, Maponga CC, Prasad PN, Morse GD (2014) Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine 10(4):831–838

    Article  PubMed  CAS  Google Scholar 

  111. Lowe KC, Akande SL, Bonnett R, White RD, Berenbaum MC (1992) Protective effects of a novel perfluorochemical emulsion in photodynamic therapy. Biomater Artif Cell Immobil Biotechnol 20(2–4):925–927

    CAS  Google Scholar 

  112. Vercellotti GM, Hammerschmidt DE, Craddock PR, Jacob HS (1982) Activation of plasma complement by perfluorocarbon artificial blood: probable mechanism of adverse pulmonary reactions in treated patients and rationale for corticosteroids prophylaxis. Blood 59(6):1299–1304

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Vemula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahato, M., Jayandharan, G.R., Vemula, P.K. (2018). Viral- and Non-viral-Based Hybrid Vectors for Gene Therapy. In: Jayandharan, G. (eds) Gene and Cell Therapy: Biology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0481-1_4

Download citation

Publish with us

Policies and ethics