Skip to main content

Aberration Corrected Transmission Electron Microscopy and Its Applications

  • Chapter
  • First Online:
Progress in Nanoscale Characterization and Manipulation

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 272))

  • 1742 Accesses

Abstract

In Chap. 3, it has shown that TEM is very powerful for the study of microstructures of materials, which helps to deepen understanding of the relationship between the microstructures and properties. With the diversification and complication of materials there is an urgent need for observing microstructures at atomic scale. During the past decade, the development of aberration correction technology has improved the spatial resolution of a TEM to sub-angstrom and the energy resolution to 0.1 eV. In this chapter we will firstly introduce the theory and methods of aberration correction in TEM. Then some new applications of aberration corrected TEM in materials science will be exampled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, E.: Electron microscopy of quasicrystals-where are the atoms? Chem. Soc. Rev. 41(20), 6787–6798 (2012)

    Article  Google Scholar 

  • Abe, E., Pennycook, S.J., Tsai, A.P.: Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature 421(6921), 347–350 (2003)

    Article  ADS  Google Scholar 

  • Allen, L.J., D’Alfonso, A.J., Freitag, B., Klenov, D.O.: Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull. 37(01), 47–52 (2012)

    Article  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Article  ADS  Google Scholar 

  • Batson, P.E.: Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366(6457), 727–728 (1993)

    Google Scholar 

  • Batson, P.E., Reyes-Coronado, A., Barrera, R.G., Rivacoba, A., Echenique, P.M., Aizpurua, J.: Nanoparticle movement: plasmonic forces and physical constraints. Ultramicroscopy 123, 50–58 (2012)

    Article  Google Scholar 

  • Bingham, J.M., Anker, J.N., Kreno, L.E., Van Duyne, R.P.: Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132(49), 17358–17359 (2010)

    Article  Google Scholar 

  • Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., Pennycook, S.J.: Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105(8), 4 (2010)

    Article  Google Scholar 

  • Born, M., Wolf, E.: Principles of optics (1993)

    Google Scholar 

  • Burch, D., Singh, G., Ceder, G., Bazant, M.Z.: Phase-transformation wave dynamics in LiFePO\(_{4}\). In: Theory, Modeling and Numerical Simulation of Multi-Physics Materials Behavior, vol. 139, pp. 95–100 (2008)

    Google Scholar 

  • Chisholm, M.F., Maiti, A., Pennycook, S.J., Pantelides, S.T.: Atomic configurations and energetics of arsenic impurities in a silicon grain boundary. Phys. Rev. Lett. 81(1), 132–135 (1998)

    Article  ADS  Google Scholar 

  • Chu, M.W., Liou, S.C., Chang, C.P., Choa, F.S., Chen, C.H.: Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys. Rev. Lett. 104(19) (2010)

    Google Scholar 

  • Cowley, J.M.: Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15(2), 58 (1969)

    Article  ADS  Google Scholar 

  • D’Alfonso, A.J., Freitag, B., Klenov, D., Allen, L.J.: Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys. Rev. B 81(10), 4 (2010)

    Article  Google Scholar 

  • Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., Lupini, A.R.: Progress in aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 50(3), 177–185 (2001)

    Google Scholar 

  • Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F.: Lithium deintercalation in LiFePO\(_{4}\) nanoparticles via a domino-cascade model. Nat. Mater. 7(8), 665–671 (2008)

    Article  ADS  Google Scholar 

  • Deltrap, J.H.M.: Correction of spherical aberration by means of nonrotational symmetrical lenses. J. Appl. Phys. 35(10), 3095 (1964)

    Google Scholar 

  • Dwyer, C.: Atomic-resolution core-level spectroscopy in the scanning transmission electron. Microscope 175, 145–199 (2013)

    Google Scholar 

  • Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y.: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110(7), 903–923 (2010)

    Article  Google Scholar 

  • Findlay, S.D., Azuma, S., Shibata, N., Okunishi, E., Ikuhara, Y.: Direct oxygen imaging within a ceramic interface, with some observations upon the dark contrast at the grain boundary. Ultramicroscopy 111(4), 285–289 (2011)

    Article  Google Scholar 

  • Fitting, L., Thiel, S., Schmehl, A., Mannhart, J., Muller, D.A.: Subtleties in ADF imaging and spatially resolved EELS: a case study of low-angle twist boundaries in SrTiO\(_3\). Ultramicroscopy 106(11–12), 1053–1061 (2006)

    Article  Google Scholar 

  • Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304(5677), 1650–1653 (2004)

    Article  ADS  Google Scholar 

  • Gabor, D.: A new microscopic principle. Nature 161(4098), 777–778 (1948)

    Article  ADS  Google Scholar 

  • Gazquez, J., Luo, W., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Pantelides, S.T., Pennycook, S.J., Varela, M.: Atomic-resolution imaging of spin-state superlattices in nanopockets within cobaltite thin films. Nano Lett. 11(3), 973–976 (2011)

    Article  ADS  Google Scholar 

  • Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A.: Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)

    Article  ADS  Google Scholar 

  • Gu, L., Zhu, C., Li, H., Yu, Y., Li, C., Tsukimoto, S., Maier, J., Ikuhara, Y.: Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133(13), 4661–4663 (2011)

    Article  Google Scholar 

  • Haguenau, F., Hawkes, P.W., Hutchison, J.L., Satiat-Jeunemaitre, B., Simon, G.T., Williams, D.B.: Key events in the history of electron microscopy. Microsc. Microanal. 9(2), 96–138 (2003)

    Article  ADS  Google Scholar 

  • Haider, M., Braunshausen, G., Schwan, E.: Correction of the spherical-aberration of A 200-kV TEM by means of a hexapole-corrector. Optik 99(4), 167–179 (1995)

    Google Scholar 

  • Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K.: Electron microscopy image enhanced. Nature 392(6678), 768–769 (1998a)

    Google Scholar 

  • Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K.: A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1), 53–60 (1998b)

    Article  Google Scholar 

  • Hansteen, O.H., Fjellvag, H., Hauback, B.C.: Crystal structure, thermal and magnetic properties of La\(_3\)Co\(_3\)O\(_8\). Phase relations for LaCoO\(_3\)-delta (\(0.00 <=\) delta \(<= 0.50\)) at 673 K. J. Mater. Chem. 8(9), 2081–2088 (1998)

    Google Scholar 

  • Hely, H.: Test of An Improved Corrected Electron-Microscope. 2. Optik 60(4), 353–370 (1982)

    Google Scholar 

  • Houdellier, F., Roucau, C., Clement, L., Rouviere, J.L., Casanove, M.J.: Quantitative analysis of HOLZ line splitting in CBED patterns of epitaxially strained layers. Ultramicroscopy 106(10), 951–959 (2006)

    Article  Google Scholar 

  • Hytch, M.J., Houdellier, F., Hue, F., Snoeck, E.: Dark-field electron holography for the mapping of strain in nanostructures: correcting artefacts and aberrations. J. Phys.: Conf. Ser. 241, 012027 (2010)

    Google Scholar 

  • Inouez, S., Kawai, M., Ichikawa, N., Kageyama, H., Paulus, W., Shimakawa, Y.: Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nat. Chem. 2(3), 213–217 (2010)

    Article  Google Scholar 

  • Intaraprasonk, V., Xin, H.L., Muller, D.A.: Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 1454–1466 (2008)

    Article  Google Scholar 

  • Ishikawa, R., Okunishi, E., Sawada, H., Kondo, Y., Hosokawa, F., Abe, E.: Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10(4), 278–281 (2011)

    Article  ADS  Google Scholar 

  • Itakura, M., Watanabe, N., Nishida, M., Daio, T., Matsumura, S.: Atomic-resolution X-ray energy-dispersive spectroscopy chemical mapping of substitutional Dy atoms in a high-coercivity neodymium magnet. Jpn. J. Appl. Phys. 52(5), 4 (2013)

    Google Scholar 

  • Jia, C.L., Urban, K.: Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303(5666), 2001–2004 (2004)

    Article  ADS  Google Scholar 

  • Jia, C.L., Lentzen, M., Urban, K.: Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299(5608), 870–873 (2003)

    Article  ADS  Google Scholar 

  • Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O\(_{3}\). Science 331(6023), 1420–1423 (2011)

    Article  ADS  Google Scholar 

  • Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V., Kisielowski, C.: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108(6), 589–604 (2008)

    Article  Google Scholar 

  • Kabius, B., Hartel, P., Haider, M., Muller, H., Uhlemann, S., Loebau, U., Zach, J., Rose, H.: First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc. (Tokyo) 58(3), 147–155 (2009)

    Article  Google Scholar 

  • Khanal, S., Casillas, G., Velazquez-Salazar, J.J., Ponce, A., Jose-Yacaman, M.: Atomic resolution imaging of polyhedral PtPd core-shell nanoparticles by Cs-corrected STEM. J. Phys. Chem. C Nanomater. Interfaces 116(44), 23596–23602 (2012)

    Article  Google Scholar 

  • Kim, Y.M., He, J., Biegalski, M.D., Ambaye, H., Lauter, V., Christen, H.M., Pantelides, S.T., Pennycook, S.J., Kalinin, S.V., Borisevich, A.Y.: Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 11(10), 888–894 (2012)

    Article  ADS  Google Scholar 

  • Kirkland, E.J.: On the optimum probe in aberration corrected ADF-STEM. Ultramicroscopy 111(11), 1523–1530 (2011)

    Article  Google Scholar 

  • Kirkland, A.I., Meyer, R.R.: "Indirect" high-resolution transmission electron microscopy: aberration measurement and wavefunction reconstruction. Microsc. Microanal. 10(4), 401–413 (2004)

    Article  ADS  Google Scholar 

  • Klie, R.F., Ito, Y., Stemmer, S., Browning, N.S.: Observation of oxygen vacancy ordering and segregation in Perovskite oxides. Ultramicroscopy 86(3–4), 289–302 (2001)

    Article  Google Scholar 

  • Knoll, M., Ruska, E.: The electron microscope. Zeitschrift Fur Physik 78(5–6), 318–339 (1932)

    Article  ADS  Google Scholar 

  • Kohl, H., Rose, H.: Theory of image formation by inelastically scattered electrons in the electron. Microscope 65, 173–227 (1985)

    Google Scholar 

  • Koops, H., Kuck, G., Scherzer, O.: Test of an electron-optical achromator. Optik 48(2), 225–236 (1977)

    Google Scholar 

  • Kourkoutis, L.F., Hotta, Y., Susaki, T., Hwang, H.Y., Muller, D.A.: Nanometer scale electronic reconstruction at the interface between LaVO\(_3\) and LaVO\(_4\). Phys. Rev. Lett. 97(25), 4 (2006)

    Google Scholar 

  • Krivanek, O.L., Dellby, N., Lupini, A.R.: Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4), 1–11 (1999)

    Article  Google Scholar 

  • Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Woodruff, J.W.: An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179–195 (2008)

    Article  Google Scholar 

  • Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J.: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571–574 (2010)

    Article  ADS  Google Scholar 

  • Kubel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T.C., Carlsson, A., Bradley, J.: Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11(5), 378–400 (2005)

    Article  ADS  Google Scholar 

  • Lee, J.W., Zhou, W., Idrobo, J.C., Pennycook, S.J., Pantelides, S.T.: Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO\(_4\). Phys. Rev. Lett. 107(8), 5 (2011)

    Article  Google Scholar 

  • Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., Urban, K.: High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92(3–4), 233–242 (2002)

    Article  Google Scholar 

  • Liao, Y.: Practical Electron Microscopy and Database (2007)

    Google Scholar 

  • Lichte, H., Lehmann, M.: Electron holography-basics and applications. Rep. Prog. Phys. 71(1) (20080

    Google Scholar 

  • Lichte, H.: Optimum focus for taking electron holograms. Ultramicroscopy 38(1), 13–22 (1991)

    Article  Google Scholar 

  • Lichte, H.: Electron holography: optimum position of the biprism in the electron microscope. Ultramicroscopy 64(1–4), 79–86 (1996)

    Article  Google Scholar 

  • Lichte, H., Linck, M., Geiger, D., Lehmann, M.: Aberration correction and electron holography. Microsc. Microanal. 16(4), 434–440 (2010)

    Article  ADS  Google Scholar 

  • Linck, M., Lichte, H., Lehmann, M.: Off-axis electron holography: materials analysis at atomic resolution. Int. J. Mater. Res. 97(7), 890–898 (2006)

    Article  Google Scholar 

  • Liu, J.Y., Cui, L.F., Miao, S.: Aberration-corrected STEM investigation of the growth mechanism of hematite pseudo-cubic nanocrystals. Microsc. Microanal. 18 (2012)

    Google Scholar 

  • Liu, J.Y.: The role of aberration-corrected STEM in developing supported catalysts. Microsc. Microanal. 18, 2 (2012)

    ADS  Google Scholar 

  • Lupini, A.R., Pennycook, S.J.: Localization in elastic and inelastic scattering. Ultramicroscopy 96(3–4), 313–322 (2003)

    Article  Google Scholar 

  • Mavrikakis, M., Stoltze, P., Norskov, J.K.: Making gold less noble. Catal. Lett. 64(2–4), 101–106 (2000)

    Article  Google Scholar 

  • Molina, L.M., Hammer, B.: Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 69(15), 22 (2004)

    Article  Google Scholar 

  • Mollenstedt, G., Hubig, W.: Substandzdifferenzierung Im Elektronen-emissionsmi- kroskop Elektronenauslosung Durch Schragen Atomstrahlbeschuss. Optik 11(11), 528–539 (1954)

    Google Scholar 

  • Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263–270 (2009)

    Article  ADS  Google Scholar 

  • Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., Hwang, H.Y.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO\(_{3}\). Nature 430(7000), 657–661 (2004)

    Article  ADS  Google Scholar 

  • Müller, H., Uhlemann, S., Hartel, P., Haider, M.: Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12(6), 442 (2006)

    Article  ADS  Google Scholar 

  • Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 305(5691), 1741 (2004)

    Article  Google Scholar 

  • Nelson, C.T., Gao, P., Jokisaari, J.R., Heikes, C., Adamo, C., Melville, A., Baek, S.H., Folkman, C.M., Winchester, B., Gu, Y.J., Liu, Y.M., Zhang, K., Wang, E.G., Li, J.Y., Chen, L.Q., Eom, C.B., Schlom, D.G., Pan, X.Q.: Domain dynamics during ferroelectric switching. Science 334(6058), 968–971 (2011)

    Article  ADS  Google Scholar 

  • Oshima, Y., Sawada, H., Hosokawa, F., Okunishi, E., Kaneyama, T., Kondo, Y., Niitaka, S., Takagi, H., Tanishiro, Y., Takayanagi, K.: Direct imaging of lithium atoms in LiV\(_{2}\)O\(_{4}\) by spherical aberration-corrected electron microscopy. J. Electron Microsc. 59(6), 457–461 (2010)

    Google Scholar 

  • Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)

    Article  Google Scholar 

  • Pennycook, S.J.: Scanning transmission electron microscopy: seeing the atoms more clearly. Mrs Bull. 37(10), 943–951 (2012)

    Article  Google Scholar 

  • Rose, H.: Aplanatic electron-lenses. Optik 34(3), 285–289 (1971a)

    Google Scholar 

  • Rose, H.: Properties of spherically corrected achromatic electron-lenses. Optik 33(1), 1–5 (1971b)

    Google Scholar 

  • Rose, H.: Prospects for aberration-free electron microscopy. Ultramicroscopy 103(1), 1–6 (2005)

    Article  Google Scholar 

  • Saghi, Z., Midgley, P.A.: Electron tomography in the (S) TEM: from nanoscale morphological analysis to 3D atomic imaging. Annu. Rev. Mater. Res. 42(1), 59–79 (2012)

    Article  ADS  Google Scholar 

  • Saghi, Z., Holland, D.J., Leary, R., Falqui, A., Bertoni, G., Sederman, A.J., Gladden, L.F., Midgley, P.A.: Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Lett. 11(11), 4666–4673 (2011)

    Article  ADS  Google Scholar 

  • Sanchez, S.I., Small, M.W., Zuo, J.M., Nuzzo, R.G.: Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters at atomic resolution. J. Am. Chem. Soc. 131(24), 8683–8689 (2009)

    Article  Google Scholar 

  • Scherzer, O.: The weak electrical single lens lowest spherical aberration. Zeitschrift Fur Physik 101(1), 23–26 (1936)

    Article  ADS  Google Scholar 

  • Scherzer, O.: Spharische Und Chromatische Korrektur Von Elektronen-Linsen. Optik 2(2), 114–132 (1947)

    MathSciNet  Google Scholar 

  • Scherzer, O.: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20(1), 20–29 (1949)

    Article  ADS  Google Scholar 

  • Scholl, J.A., Koh, A.L., Dionne, J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390), 421–468 (2012)

    Article  ADS  Google Scholar 

  • Scott, M.C., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J.W.: Electron tomography at 2.4-angstrom resolution. Nature 483(7390), 444–491 (2012)

    Article  ADS  Google Scholar 

  • Seeliger, R.: Versuche Zur Spharischen Korrektur Von Elektronenlinsen Mittels Nicht Rotationssymmetrischer Abbldungselemente. Optik 5(8–9), 490–496 (1949)

    Google Scholar 

  • Seeliger, R.: Die Spharische Korrenktur Von Elektronenlinse Mittels Nicht-Rotatio- nssymmetrischer Abbildungselemente. Optik 8(7), 311–317 (1951)

    Google Scholar 

  • Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO\(_{2}\). Nat. Mater. 2(7), 464–467 (2003)

    Article  ADS  Google Scholar 

  • Smith, D.J.: Development of aberration-corrected electron microscopy. Microsc. Microanal. 14(1), 2–15 (2008)

    Article  ADS  Google Scholar 

  • Smith, D.J.: Progress and problems for atomic-resolution electron microscopy. Micron 43(4), 504–508 (2012)

    Article  Google Scholar 

  • Streifferz, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V.R., Auciello, O., Bai, G.R., Stephenson, G.B.: Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO\(_3\) thin films. Phys. Rev. Lett. 89(6), 4 (2002)

    Google Scholar 

  • Tan, H., Turner, S., Yücelen, E., Verbeeck, J., Van Tendeloo, G.: 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys. Rev. Lett. 107(10) (2011)

    Google Scholar 

  • Tanaka, N.: Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Sci. Technol. Adv. Mater. 9(1), 014111 (2008)

    Article  Google Scholar 

  • Thust, A., Coene, W.M.J., deBeeck, M.O., VanDyck, D.: Focal-series reconstruction in HRTEM: simulation studies on non-periodic objects. Ultramicroscopy 64(1–4), 211–230 (1996)

    Article  Google Scholar 

  • Urban, K.W.: Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506–510 (2008)

    Article  ADS  Google Scholar 

  • Urban, K., Kabius, B., Haider, M., Rose, H.: A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J. Electron Microsc. 48(6), 821–826 (1999)

    Article  Google Scholar 

  • Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334): 374–377 (2011)

    Google Scholar 

  • Varela, M., Oxley, M., Luo, W., Tao, J., Watanabe, M., Lupini, A., Pantelides, S., Pennycook, S.: Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B 79(8) (2009)

    Google Scholar 

  • Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J., Pennycook, S.J.: Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92(9), 4 (2004)

    Article  Google Scholar 

  • Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., Pennycook, S.J.: Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005)

    Article  ADS  Google Scholar 

  • Walther, T., Ross, I.M.: Aberration corrected high-resolution transmission and scanning transmission electron microscopy of thin perovskite layers. Phys. Procedia 40: 49–55 (2013)

    Google Scholar 

  • Wang, J.X., Inada, H., Wu, L.J., Zhu, Y.M., Choi, Y.M., Liu, P., Zhou, W.P., Adzic, R.R.: Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131(47), 17298–17302 (2009)

    Article  Google Scholar 

  • Yamasaki, J., Kawai, T., Tanaka, N.: A simple method for minimizing non-linear image contrast in spherical aberration-corrected HRTEM. J. Electron Microsc. 54(3), 209–214 (2005)

    Google Scholar 

  • Yan, Y., Chisholm, M.F., Duscher, G., Maiti, A., Pennycook, S.J., Pantelides, S.T.: Impurity-induced structural transformation of a MgO grain boundary. Phys. Rev. Lett. 81(17), 3675–3678 (1998)

    Article  ADS  Google Scholar 

  • Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S.: Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335(6066), 317–319 (2012)

    Article  ADS  Google Scholar 

  • Zach, J., Haider, M.: Correction of spherical and chromatic aberration in a low-voltage SEM. Optik 98(3), 112–118 (1995)

    Google Scholar 

  • Zhu, J., Ye, H.: Insight for microstructure research of materials, ACTA Metall. Sin. 46(11): 15 (2010). http://iamdn.rutgers.edu/?q=node/1168

Download references

Acknowledgements

It is a pleasure to acknowledge the help of many students Nijie Zhao, Xiao Chen, Min He, Jinan Shi, Licong Peng, Dongdong Xiao, Zhenzhong Yang and Shanming Li in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Peking University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, L. (2018). Aberration Corrected Transmission Electron Microscopy and Its Applications. In: Wang, R., Wang, C., Zhang, H., Tao, J., Bai, X. (eds) Progress in Nanoscale Characterization and Manipulation. Springer Tracts in Modern Physics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-0454-5_6

Download citation

Publish with us

Policies and ethics