Skip to main content

Arbuscular Mycorrhizal Fungi: Effects on Secondary Metabolite Production in Medicinal Plants

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Medicinal plants are used by 80% of the world population for their primary health care. The medicinal value of plants is primarily attributed to the secondary metabolite content such as terpenoids, alkaloids, and phenolics. These compounds play a crucial role in plant defense, are merchandised valued for their therapeutic applications and ecological role, and are also used as flavoring agents. Arbuscular mycorrhizal fungi (AMF) or Glomeromycota is known to form a symbiotic relationship with many terrestrial plants. AM fungi–plant consortium enhanced the production of plant terpenoids, alkaloids, and phenolics, which are valuable to human health. The potential role of arbuscular mycorrhiza (AM) symbiosis in amplification of the secondary metabolite content has attained enormous recognition for sustainable cultivation of medicinally important crops. AMF–plant symbiosis not only improves the growth and nutrients but also exerts a synergistic effect on accumulation of bioactive compounds with medicinal importance. Current studies have also recognized AM-mediated modulation of morphology, biochemistry, and gene expression in medicinal as well as in the industrial important plants. This chapter provides an appraisal on contemporary finding in the area of AMF investigation with a marked emphasis on the yield of pharmaceutically important plant-derived secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  • Adams RP, Habte M, Park S, Dafforn MR (2004) Preliminary comparison of vetiver root essential oils from cleansed (bacteria-and fungus-free) versus non-cleansed (normal) vetiver plants. Biochem Syst Ecol 32(12):1137–1144

    Article  CAS  Google Scholar 

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66(4):762–769

    Article  PubMed  CAS  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58:371–374

    Article  CAS  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35(3):867–880

    Article  CAS  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest AC (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258

    Article  PubMed  CAS  Google Scholar 

  • Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA (2008) Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different arbuscular mycorrhizal fungi. Adv Environ Biol 2(1):20–24

    CAS  Google Scholar 

  • Asrar AWA, Elhindi KM (2010) Elhindi. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18(1):93–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  • Awasthi A, Bharti N, Nair N, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Bagheri S, Ebrahimi MA, Davazdahemami S, Minooyi J (2014) Terpenoids and phenolic compounds production of mint genotypes in response to mycorrhizal bio-elicitors. Tech J Eng Appl Sci 4:339–348

    Google Scholar 

  • Bagyaraj D J, Varma A (1995) Interaction between arbuscular mycorrhizal fungi and plants. In Advances in Microbial Ecology Springer, Boston pp 119–142

    Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bian XJ, Hu L, Li XL, Zhang FS (2001) Effect of VA mycorrhiza on the turfgrass quality and mineral nutrient uptakes. Acta Pratacul Sin 10(3):42–46

    Google Scholar 

  • Binet MN, Van Tuinen D, Deprêtre N, Koszela N, Chambon C, Gianinazzi S (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 21:523–535

    Article  PubMed  CAS  Google Scholar 

  • Boby VU, Bagyaraj DJ (2003) Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculants. World J Microbiol Biotechnol 19(2):175–180

    Article  CAS  Google Scholar 

  • Boller T, Wiemken A (1986) Dynamics of vacuolar compartmentation. Annu Rev Plant Physiol 37(1):137–164

    Article  CAS  Google Scholar 

  • Borde M, Dudhane M, Jite PK (2009) Role bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not Bot Hortic Agrobot Cluj 37(2):124–128

    Google Scholar 

  • Cai BY, Jie WG, Ge JP, Yan XF (2008) Molecular detection of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Mycosystema 27(6):884–893

    CAS  Google Scholar 

  • Cao DX, Zhao JL (2007) The investigation of arbuscular mycorrhizal fungi and soil factors from the rhizospere of medicinal plant Angelica dahurica. Acta Agric Boreali-Sin 22:47–50

    Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Chen LT, Guo QS, Liu ZY (2009a) Colonization pattern and dynamic change of arbuscular mycorrhizal fungi in Pinellia ternate. Guizhou Agric Sci 37(2):37–39

    Google Scholar 

  • Chen LT, Liu ZY, Guo QS, Zhu GS (2009b) Advances in studies on arbuscular mycorrhizas in medicinal plants. Chin Tradit Herb Drugs 40(1):156–160

    CAS  Google Scholar 

  • Chen LT, Guo QS, Liu ZY (2010) Arbuscular mycorrhiza of cultivated and wild Pinellia ternate. Chin J Chin Mater Med 35(4):405–410

    CAS  Google Scholar 

  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AM FUNGI inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic 122(4):633–637

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902

    Article  CAS  Google Scholar 

  • Cordell GA (1995) Changing strategies in natural products chemistry. Phytochem 40(6):1585–1612

    Article  CAS  Google Scholar 

  • Corizier R (1974) In: Kleinman VS et al. (eds) Medicine in Chinese Culture, Department of Health, Education and Welfare Publications, pp 26

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol 24:1250–1319

    Google Scholar 

  • David S (2000) The history of WWII medicine. http://home.att.net/~steinert/wwii.htm

  • De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, de Jesús Sánchez-Colín M, Muñoz-Muñiz OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349(1–2):367–376

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2–3):277–305

    Article  CAS  Google Scholar 

  • Fan JH, Yang GT, Mu LQ, Zhou JH (2006) Effect of AM fungi on the content of berberine, jatrorrhizine and palmatine of Phellodendron amurense seedings. Prot For Sci Technol 5:24–26

    Google Scholar 

  • Farahani HA, Lebaschi MH, Hamidi A (2008) Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander. J Adv Nat Appl Sci 2(2):55–59

    CAS  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190

    Article  PubMed  CAS  Google Scholar 

  • Floß DS, Hause B, Lange PR, Küster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56(1):86–100

    Article  PubMed  CAS  Google Scholar 

  • Fransworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Drugs from medicinal plants. Bull WHO 63:965–981

    Google Scholar 

  • Freitas MSM, Martins MA, Vieira IJC (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesq Agropec Bras 39(9):887–894

    Article  Google Scholar 

  • Galbley S, Thiericke R (1999) Drug Discovery FROM Nature. Springer, Berlin

    Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    PubMed  CAS  Google Scholar 

  • Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. Biochem Plant Sec Met 2:222–299

    CAS  Google Scholar 

  • Ghisalberti EL (1993) Detection and isolation of bioactive natural products. In: Colegate SM, Molyneux RJ (eds) Bioactive natural products: detection, isolation, and structural determination. CRC Press, Boca Raton, pp 9–57

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, Tuinen DV, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gong MQ, Wang FZ, Chen Y (2002) Study on application of arbuscular-mycorrhizas in growing seedling of Aloe vera. J Chin Med Mater 25(1):1–3

    Google Scholar 

  • Gopal RM (2001) J Med Aromat Plant Sci, 22/4A & 23/1A, 572

    Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29(6):753–756

    Article  Google Scholar 

  • Guo LP, Wang HG, Hang LQ (2006) Effects of arbuscular mycorrhizae on growth and essential oil of Atractylodes lancea. Chin J Chin Mater Med 31(8):1491–1495

    Google Scholar 

  • Guo QS, Chen LT, Liu ZY (2010) Study on influence of arbuscular mycorrhizal fungi on Pinellia ternata yield and chemical composition. Chin J Chin Med 35(3):333–338

    Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81(1):77–79

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger A, Neimann H, Kaebisch A, Bauer H, Tamura T (1986) Appropriate glucosylation of the FMS gene product is a prerequisite for its transforming potency. EMBO J 5:689–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris JC, Cottrell S, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57:282–286

    Article  PubMed  CAS  Google Scholar 

  • Harrison M (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Biol 50:361–389

    Article  CAS  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhyzal fungi in sustainable agriculture. Front Ecol Environ 310:533–539

    Article  Google Scholar 

  • Herbert RB (2001) The biosynthesis of plant alkaloids and nitrogenous microbial metabolites. Nat Prod Rep 18(1):50–65

    Article  PubMed  CAS  Google Scholar 

  • He XL, Li J, Gao AX, Zhao LL, Zao JL (2009a) Effects of different host plants on the development of AM fungi in the rhizospere of Salvia miltiorrhiza. J Hebei Univ 29(5):533–537

    Google Scholar 

  • He XL, Li J, He C (2009b) Effects of AM fungi on the chemical components of Salvia miltiorrhiza Bge. Chin Agric Sci Bull 25(14):182–185

    Google Scholar 

  • He XL, Liu T, Zhao LL (2009c) Effects of inoculating AM fungi on physiological characters an nutritional components of Astragalus membranaceus under different N application levels. Chin J Appl Ecol 20(9):2118–2122

    CAS  Google Scholar 

  • He XL, Wang LY, Ma J, Zhao LL (2010) AM fungal diversity in the rhizosphere of Salvia miltiorrhiza in Anguo city of Hebei province. Biodivers Sci 18(2):187–194

    Article  Google Scholar 

  • Hodge A, Campbell CDFAH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hostettmann K, Marston A, Ndjoko K, Wolfender JL (2000) The potential of African plants as a source of drugs. Curr Org Chem 4(10):973–1010

    Article  CAS  Google Scholar 

  • Huang KC (1999) The pharmacology of Chinese herbs: a brief history of Chinese medicine, 2nd edn. CRC Press, Boca Raton, pp 1–16

    Google Scholar 

  • Huang YF, Li HH, Chen HY, Li Y (2003) Preliminary study on the mycorrhiza inoculation on the seeding of camptotheca acuminate. Guangdong For Sci Technol 19(1):40–42

    Google Scholar 

  • Huang LQ, Chen ML, Xiao PG (2004) The modern biological basis and model hypothesis on the research of genuineness of Chinese herbal medicine. Chin J Chin Mater Med 29(6):494–496

    Google Scholar 

  • Huang JH, Tan JF, Jie HK, Zeng RS (2011) Effects of invoculating arbuscular mycorrhizal fungi on Artemisia annua growth and its officinal components. Chin J Appl Ecol 22(6):1443–1449

    CAS  Google Scholar 

  • Ishibashi A (2002) In: Complementary and alternative medicine in Japan, SY19-4

    Google Scholar 

  • Janardhanan KK, Abdul-Khaliq K (1995) Influence of vesicular arbuscular mycorrhizal fungi on growth and productivity of German chamomile in alkaline usar soil. In: Adholeya A, Singh S (eds) Mycorrhizae: biofertilizers for the future. Tata Energy Research Institute, New Delhi, pp 410–412

    Google Scholar 

  • Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jie WG, Cai BY, Ge JP, Yan XF (2007) Identification of arbuscular mycorrhizal fungi of Phellodendren amurense Rupr. Biotechnology 17(6):32–35

    CAS  Google Scholar 

  • Jugran AK, Bahukhandi A, Dhyani P, Bhatt ID, Rawal RS, Nandi SK, Palni LMS (2015) The effect of inoculation with mycorrhiza: AM on growth, phenolics, tannins, phenolic composition and antioxidant activity in Valeriana jatamansi Jones. J Soil Sci Plant Nutr 15(4):1036–1049

    CAS  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Michael MT, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18(5):459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311

    Article  PubMed  CAS  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  PubMed  CAS  Google Scholar 

  • Karagiannidis N, Thomidisa T, Lazari D, Filotheou EP, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129:329–334

    Article  CAS  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  PubMed  CAS  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    Article  CAS  Google Scholar 

  • Krishna H, Singh S, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hort 106(4):554–567

    Article  CAS  Google Scholar 

  • Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by fungus Paxillus involutus. Plant Soil 110:3–8

    Article  CAS  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115(2):650–656

    Article  CAS  Google Scholar 

  • Li CX (2003a) Effect of vesicular-arbuscular mycorrhizal fungi on production of Ginseng. J Chin Med Mater 26(7):475–476

    Google Scholar 

  • Li CX (2003b) Effects of infecting vesicular-arbuscular mycorrhiza on growth and development of Coix Lachryma-jobi L. J Shanxi Agric Univ 23(4):351–353

    Google Scholar 

  • Liu T, He XL (2008) Research on the formation course of arbuscular mycorrhizae from Astragalus membranaceus (Fisch.) Bunge seedlings. J Hebei For Orc Res 23(3):311–314

    Google Scholar 

  • Liu SL, He XL (2009) Effects of AM fungi on growth of Glycyrrhiza inflata Bat under water stress. J Nucl Agric Sci 23(4):692–696

    Google Scholar 

  • Liu JN, Wu LJ, Wei SL, Xiao X, Su CX, Jiang P, Song ZB, Wang T, Yu ZL (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52(1):29–39

    Article  CAS  Google Scholar 

  • Loomis WD, Corteau R (1972) Essential oil biosynthesis. Rec Adv Phytochem 6:147–185

    Article  Google Scholar 

  • Lu YQ, He XL (2005) Effects of AM fungi on the chemical composition and growth amount of Atractylodes macrocephala koidz seedling on different N levels. J Hebei Univ 25(6):650–653

    CAS  Google Scholar 

  • Lu YQ, He XL (2008) Effects of AM fungi on photosynthetic pigment of Atractylodes macrocephala under different nitrogen levels. Acta Agric Bor Occi Sin 17(4):314–321

    Google Scholar 

  • Lu YQ, Cui Y, He XL (2008a) Effects of AM fungi on biomass and nitrogen content of Atractylodes macrocephala under different nitrogen levels. J Henan Agric Sci 4:94–96

    Google Scholar 

  • Lu YQ, He XL, Li LZ (2008b) Effects of AM fungi on leaf protective enzymes of Atractrlodes macrocephala under different nitrogen levels. Hubei Agric Sci 47(6):659–660

    Google Scholar 

  • Lu YQ, Wang DX, Lu XL, Li LM, Li Y, He XL (2011) Effects of AM fungi on physiological character and nutritional component of Atractylodes macrocephala under different N levels. Acta Bot Bor Occi Sin 31(2):351–356

    CAS  Google Scholar 

  • Lu FC, Lee CY, Wang CL (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J 3:e1266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ma J, He XL, Jiang ZM, Wang LY (2009) Influence of soil factors on arbuscular mycorrhizal fungal colonization of Salvia miltiorrhiza. Acta Agric Bor Occi Sin 18(5):194–198

    Google Scholar 

  • Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999) The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207:620–623

    Article  CAS  Google Scholar 

  • Mamta G, Rahi P, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2012) Comparative efficiency of phosphate-solubilizing bacteria under greenhouse conditions for promoting growth and aloin-A content of Aloe barbadensis. Arch Agron Soil Sci 58(4):437–449

    Article  CAS  Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Article  Google Scholar 

  • Mandal A, Mandal S, Park MH (2014) Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS One 9(11):e111800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal S, Upadhyay S, Singh VP, Kapoor R (2015) Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol Biochem 89:100–106

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Elsevier Science, San Diego

    Google Scholar 

  • Marschner H (1998) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agric Univ Hebei 34(1):51–61

    CAS  Google Scholar 

  • Morone Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tissue Organ 93:139–149

    Article  CAS  Google Scholar 

  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    Article  CAS  Google Scholar 

  • Nell M, Wawrosh C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root solonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana of ficinalis L. Planta Med 76:393–398

    Article  PubMed  CAS  Google Scholar 

  • Pan PL, Chen DQ, Chen YT, Zhou FM (2008) The research on the sift and germinate of AM FUNGI spore of Ophiopogon japonicas. Mod Chin Med 10(10):13–14

    Google Scholar 

  • Pandey DK, Banik RM (2009) The influence of dual inoculation with Glomus mossae and Azotobacter on growth and barbaloin content of Aloe vera. Am Eu J Sust Agric 3(4):703–714

    Google Scholar 

  • Pandey DK, Banik RM, Dey A, Panwar J (2014) Improved growth and colchicines concentration in Gloriosa superb in mycorrhizal inoculation supplemented with phosphorus – fertilizer. Afr J Tradit Complement Altern Med 11(2):439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply: analysis of carbon costs. Plant Physiol 101:1063–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Phillipson JD (1999) New drugs from nature—It could be yew. Phytother Res 13(1):2–8

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47(8):853–861

    Article  CAS  Google Scholar 

  • Qi GH, Zhang LP, Yang WL, Lu XR, Li CL (2002) Effects of arbuscular mycorrhizal fungi on growth and disease resistance of replanted ginkgo (Ginkgo biloba L.) seedlings. J Hebei For Orch Res 17(1):58–61

    Google Scholar 

  • Qi GH, Zhang LP, Yang WL, Lv GY (2003) The effects of abruscular mycorrhiza fungi on ginkgo (Ginkgo biloba L.) in the field. Hebei Fruits 19(1):40–42

    Google Scholar 

  • Rajan SK, Reddy BJD, Bagyaraj DJ (2000) Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. Forest Ecol Manag 126(2):91–95

    Article  Google Scholar 

  • Rapparini F, Llusia J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  PubMed  CAS  Google Scholar 

  • Rasouli-Sadaghianil MH, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plant Res 4(21):2222–2228

    Google Scholar 

  • Rastogi PR, Meharotra BN (1990) (eds) In: Compendium of Indian medicinal plants, publications and information directorate, CSIR, New Delhi, vol.l, p 339

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    Article  PubMed  CAS  Google Scholar 

  • Ren JH, Liu RX, Li YL (2007) Study on arbuscular mycorrhizae of Panax notoginseng. Microbiology 34(2):224–227

    Google Scholar 

  • Ren JH, Zhang JF, Liu RX, Li YQ (2008) Study on arbuscular mycorrhizae in Taxus chinensis var. mairei. Acta Bot Bor Occi Sin 28(7):1468–1473

    Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Wilhelm B, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci 107(34):15287–15292

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas-Andrade R, Cerda-GarcÍa-Rojas CM, FrÍas-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

    Article  PubMed  CAS  Google Scholar 

  • Sailo GS, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109(7):795–798

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Shah V, Bhat SV, Bajwa BS, Domacur H, De SNJ (1980) The occurrence of forskolin in Labiatae. Planta Med 39:183–185

    Article  CAS  Google Scholar 

  • Shen XL, Guo QS, Liu ZY, Zhu GS, Liu YX (2011) Colonization progress of arbuscular mycorrhizae on tissue-cultured plantlets of Pinellia ternata. Chin J Chin Mater Med 36:93–96

    Google Scholar 

  • Shibata K, Iwata S, Nakamura M (1923) Baicalin, a new flavone-glucuronic acid compound from the roots of Scutellaria baicalensis. Acta Phytochim 1:105–139

    CAS  Google Scholar 

  • Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Sonderpublikation der GTZ (Germany)

    Google Scholar 

  • Silva MFD, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20(2):119–130

    Article  Google Scholar 

  • Silva FA, Ferreira MR, Soares LA, Sampaio EV, Maia LC (2014) Arbuscular mycorrhizal fungi increase gallic acid production in leaves of field grown Libidibia ferrea (Mart. ex Tul.) LP Queiroz. J Med Plant Res 8(36):1110–1115

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • de Sousa OM, da Silva Campos MA, de Albuquerque UP, da Silva FSB (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247

    Article  CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29(9):1955–1979

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y (2002, May 29) In Current status and future directions of alternative medicine, WHO, Geneva, Switzerland

    Google Scholar 

  • Swami Tirtha SS (1998) In: Uniyal RC et al (eds) Ayurvedic Encyclopedia, Natural Secrets to Healing, Prevention, and Longevity: history of Ayurvedic Tree, 1st edn. New Delhi, Sai Satguru Publications

    Google Scholar 

  • Szakiel A, Pączkowski H (2011a) Influence of environmental biotic factors on the content of saponins in plants. Phytochem Rev 10:493–502

    Article  CAS  Google Scholar 

  • Szakiel A, Pączkowski H (2011b) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

    Article  CAS  Google Scholar 

  • Burni T, Saadia N, Tabassum Y, Sakina B (2013) Arblscular mycorrhizal stuidies in “Aloe vera (l). burm. f.” biologically active and potential medicinal plant. Wudpecker J Agric Res 2(1):039–042

    Google Scholar 

  • Tang W, Eisenbrand G (1992) In: Chinese drugs of plant origin, SpingerVerlag, Berlin, p 127

    Google Scholar 

  • Teng HR, He XL (2005) Effects of different AM fungi and N levels on the flavonoid content of Bupleuruin scorzonerifolium Willd. J Shanxi Agric Sci 4:53–54

    Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226(1):29–35

    Article  CAS  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aeria parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353

    Article  PubMed  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  PubMed  CAS  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Verpoorte R (1999) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Klumer Academic Publishers, Dordrecht, pp 1–29

    Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang LY, He XL (2009) The resource and spatio-temporal distribution of AM fungi from Salvia miltiorrhiza in Anguo. J Agric Univ Hebei 32(6):73–79

    Google Scholar 

  • Wang Q, Li HQ, Du YR, Li Y, Li HW (1998) Isolation and identification of VA mycorrhizal fungi on Radix gentianae. Biotechnology 8(2):19–22

    CAS  Google Scholar 

  • Wang Q, He XL, Chen TS, Dou WF (2006) Ecological research of arbuscular mycorrhizal fungi in rhizosphere of Puerraria lobata. J Hebei Univ 26(4):420–425

    CAS  Google Scholar 

  • Wang DX, Lu YQ, He XL (2010) Effects of AM fungi on growth and physiological characters of Atractylodes macrocephala under different P-applied levels. Acta Bot Bor Occi Sin 30(1):136–142

    Google Scholar 

  • Warrier PK, Nambiar VPK, Ramankutti C (1996) (eds), In Indian medicinal plants: a compendium of 500 species, Orient Longmann, Hyderabad, vol 4. p 409

    Google Scholar 

  • Wei GT, Wang HG (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci Agric Sin 22(5):56–61

    CAS  Google Scholar 

  • Wei GT, Wang HG (1991) Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia Briq. Chin J Chin Mater Med 16(3):139–142

    CAS  Google Scholar 

  • Wiermann R (1981) Secondary plant products and cell and tissue differentiation. In: The biochemistry of plants, vol. 7. Academic, New York, pp 85–116

    Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Bot Res 25:141–169

    Article  CAS  Google Scholar 

  • Wink M (1999) Introduction: biochemistry, role and biotechnology of secondary metabolites. In: Wink M (ed) Biochemistry of plant secondary metabolism. Sheffield Academic Press Ltd, Sheffield, pp 1–16

    Google Scholar 

  • Wu QC, Wei QA (2008) Arbuscular mycorrhizae of Ginkgo biloba and its correlation with soil available phosphorus. J Yangtze Univ 5(3):49–52

    Google Scholar 

  • Wu QS, Liu W, Zhai HF, Ye XF, Zhao LJ (2010) Influences of AM fungi on growth and root antioxidative enzymes of Trifoliate orange seedlings under salt stress. Acta Agric Univ Jiangxiensis 32(4):759–762

    CAS  Google Scholar 

  • Xing XK, Li Y, Yolande D (2000) Ten species of vAM fungi in five ginseng fields of Jilin province. J Jilin Agric Univ 22(2):41–46

    Google Scholar 

  • Xing XK, Li Y, Wang Y, Zhang MP (2003) Foundation of dual cultural system of ginseng VA mycorrhiza fungi. J Jilin Agric Univ 25(2):154–157

    Google Scholar 

  • Xiao WJ, Yang G, Chen ML, Guo LP, Wang M (2011) AM and its application in plant disease prevention of Chinese medicinal herbs cultivation. Chin J Chin Med 36(3):252–257

    Google Scholar 

  • Yang G, Guo LP, Huang LQ, Chen M (2008) Inoculation methods of AM fungi in medicinal plant. Resour Sci 30(5):778–785

    Google Scholar 

  • Yang Y, Ou X, Yang G, Xia Y, Chen M, Guo L, Liu D (2017) Arbuscular mycorrhizal fungi regulate the growth and phyto-active compound of Salvia miltiorrhiza seedlings. Appl Sci 7(1):68

    Article  CAS  Google Scholar 

  • Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind Crop Prod 45:88–93

    Article  CAS  Google Scholar 

  • Yu Y, Yu T, Wang Y, Yan XF (2010) Effect of inoculation time on camptothecin content in arbuscular mycorrhizal Camptotheca acuminate seedlings. Chin J Plant Ecol 34(6):687–694

    CAS  Google Scholar 

  • Zeng Y, Guo LP, Hang LQ, Zhou J, Sun YZ (2007) AM and its application in TCM cultivation. World Sci Technol/Moder TCM Mater Med 9(6):83–87

    Google Scholar 

  • Zhang MC, Jing YJ, Ma J (1990) The changing of microbial ecological types after the improvement of ginseng soil. J Jilin Agric Univ 12(4):42–46

    Google Scholar 

  • Zhang Y, Xie LY, Xiong BQ, Zeng M, Yu D (2004) Correlation between the growth of arbuscular mycorrhizal fungi in the rhizosphere and the flavonoid content in the root of Ginkgo biloba. Mycosystema 23(1):133–138

    CAS  Google Scholar 

  • Zhang J, Liu DH, Guo LP, Jin H, Zhou J, Yang G (2010) Effects of four AM fungi on growth and essential oil composition in rhizome of Atractylodes lancea. World Sci Technol/Moder TCM Mater Med 12(5):779–782

    Google Scholar 

  • Zhang J, Liu DH, Guo LP, Jin H, Yang G, Zhou J (2011) Effects of arbuscular mycorrhizae fungi on biomass and essential oil in rhizome of Atractylodes lancea in different temperatures. Chin Tradit Herb Drugs 42(2):372–375

    CAS  Google Scholar 

  • Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agric Bor Occi Sin 20(3):184–189

    CAS  Google Scholar 

  • Zhao X, Wang BW, Yan XF (2006) Effect of arbuscular mycorrhiza on camptothecin content in Camptotheca acuminate seedlings. Acta Ecol Sin 26(4):1057–1062

    CAS  Google Scholar 

  • Zhao PJ, An F, Tang M (2007) Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspense. Acta Bot Bor Occi Sin 27(2):396–399

    CAS  Google Scholar 

  • Zhao JL, Deng HY, He XL (2009) Effects of AM fungi on the quality of trueborn Angelica dahurica from Hebei province. Acta Agric Boreali-Sin 24:299–302

    Google Scholar 

  • Zhou JH, Fan JH (2007) Effects of AM fungi on the berberine content in Phellodendron chinense seedings. North Hortic 12:25–27

    Google Scholar 

  • Zhou N, Xia CL, Jiang B, Bai ZC, Liu GN, Ma XK (2009) Arbuscular mycorrhiza in Paris polyphylla var. yunnanensis. Chin J Chin Med 34(14):1768–1772

    Google Scholar 

  • Zhou N, Zou L, Wang GZ, Jiang B (2010) Primary explore to relation of arbuscular mycorrhizae and its secondary metabolite steroidal saponin in Paris polyphylla. Chin J Exp Tradit Med Formulae 16(16):85–88

    Google Scholar 

  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504

    Article  PubMed  CAS  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  PubMed  CAS  Google Scholar 

  • Zubek S, Błaszkowski J, Seidler-Łożykowska K, Bąba W, Mleczko P (2013) Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Sci Pol-Hortoru 12:127–141

    Google Scholar 

  • Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390(1–2):129–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, D.K., Kaur, P., Dey, A. (2018). Arbuscular Mycorrhizal Fungi: Effects on Secondary Metabolite Production in Medicinal Plants. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_28

Download citation

Publish with us

Policies and ethics