Skip to main content

Recent Approaches for Late Blight Disease Management of Potato Caused by Phytophthora infestans

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Potato (Solanum tuberosum) is the fourth most produced noncereal crop worldwide. Among various biotic stresses, late blight caused by Phytophthora infestans is the most devastating disease. It affects both potato foliage in the field and tuber in the storage which can absolutely destroy a crop, producing a 100% crop loss. The occurrence and rigorousness of late blight caused by Phytophthora can be reduced by adopting effective and durable control methods. The use of conventional control methods (cultural practices and fungicides) was limited due to their inefficiency and non-biodegradable nature. Control of the disease has been achieved up to a great extent through the use of fungicides, but their extensive application is harmful for the environment. Therefore, there is an urgent need to find alternative eco-friendly crop protection methods. The use of microorganisms as biological control agents owing to their different modes of actions (i.e. antagonistic effects or induction of plant defence mechanisms) has proved to be a potential approach. Another economical and eco-friendly remedial measure for plant diseases being adopted involves the use of nanoparticles against plant pathogens. Providing genetic resistance against pests and diseases is another crop protection approach. Multiple resistance (R) genes have been introduced in potato varieties to provide durable resistance to late blight. Genetic modification using cisgenes is preferable as it is a feasible and highly efficient approach with low risks and high societal acceptability. Accumulation of new virulent P. infestans strains decreases the effectiveness of R-genes. Therefore, the loss of function in susceptible gene via gene silencing is the emerging approach which helps in exploring plant-pathogen interactions and provides potential strategies for disease control. RNA silencing without altering the plant genome overcomes the risk associated with transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, New York/London, p 922

    Google Scholar 

  • Ah Fong AMV, Bromann-Chung CA, Judelson HS (2008) Optimization of transgenic mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Smith I, Guest DI (2000) Combinations of potassium phosphonate and Bion (acibenzolar-S-methyl) reduce root infection and dieback of Pinus radiata, Banksia integrifolia and Isopogon cuneatus caused by Phytophthora cinnamomi. Australas Plant Pathol 29:59–63

    Article  Google Scholar 

  • Andreu AB, Guevara MG, Wolski EA, Daleo GR, Caldiz DO (2006) Enhancement of natural disease resistance in potatoes by chemicals. Pest Manag Sci 62:162–170

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2007) Knowing your enemy-blight. Available on http://sarvari-trust.org/lateblight.html/05/07/2014

  • Arnold AE, Majia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryantha IP, Cross R, Guest DI (2000) Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology 90:775–782

    Article  CAS  PubMed  Google Scholar 

  • ATTRA (Appropriate Technology Transfer to Rural Area) (2004) Organic alternatives for late blight control in potatoes. National Sustainable Agriculture Information Service

    Google Scholar 

  • Baider A, Cohen Y (2003) Synergistic interaction between BABA and Mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica 31:399–409

    Article  CAS  Google Scholar 

  • Beckerman J (2008) Understanding fungicide mobility. Purdue Extension BP-70-W

    Google Scholar 

  • Bekele K, Yaynu H (1996) Tuber yield loss assessment of potato cultivars with different levels of resistance to late blight. In: Bekele E, Abdulahi A, Yemane A (eds) “Proceedings of the 3rd annual conference, of Crop Protection Society of Ethiopia 18–19 May, Ethiopia, CPSE, Addis Abeba, pp 149–152

    Google Scholar 

  • Bektas Y, Eulgem T (2015) Synthetic plant defense elicitors. Front Plant Sci 5:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaik A, Trivedi R (2015) ZorvecTM a new age fungicide for the management of late blight in potato in South asia. 3rd international symposium on Phytophthora, Bengaluru, p 69

    Google Scholar 

  • Binyam T, Temam H, Tekalign T (2014a) Efficacy of reduced dose of fungicide sprays in the Management of Late Blight (Phytophthora infestans) disease on selected potato (Solanum tuberosum L.) varieties Haramaya, Eastern Ethiopia. J Biol Agric Health Care 4(20):46–52

    Google Scholar 

  • Binyam T, Temam H, Tekalign T (2014b) Tuber yield loss assessment of potato (Solanum tuberosum L.) varieties due to late blight (Phytophthora infestans) and its management Haramaya, eastern Ethiopia. J Biol Agric Health Care 4(23):45–54

    Google Scholar 

  • Brewer HC, Hawkins ND, Hammond-Kosack KE (2014) Mutations in the Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to Fusarium culmorum and F. graminearum. BMC Plant Biol 14:3–17

    Article  CAS  Google Scholar 

  • Brown A, Thomson-Dans C, Marchant N (eds) (1998) Western Australia’s threatened Flora. CALM, Como, pp 1–220

    Google Scholar 

  • Carlson H (1994) Potato pest management guidelines. University of California Statewide IPM Project. Available on www.ipm.ucdavis.edu/PMG/r607101211.html

  • Chambers SM, Scott ES (1995) In vitro antagonism of Phytophthora cinnamomi and Phytophthora citricola by isolates of Trichoderma spp. and Gliocladium virens. J Phytopathol 143:471–477

    Article  Google Scholar 

  • CIP (International Potato Centre) (1989) Fungal diseases of potato. Report of planning conference on fungal diseases of the potato. CIP, Lima, p 216

    Google Scholar 

  • Cohen YR (2002) β-amino butyric acid-induced resistance against plant pathogens. Plant Dis 86:448–457

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defense priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Davidse LC, Looijen D, Turkensteen LJ, Van der Wal D (1981) Occurrence of metalaxyl resistant strains of Phytophthora infestans in Dutch potato fields. Neth J Plant Pathol 87:65–68

    Article  Google Scholar 

  • Davis RM, Nunez J, Aegerter BJ (2009) Potato late blight. Statewide IPM Program, Agriculture and natural resources, University of California

    Google Scholar 

  • Dekker J (1984) The development of resistance to fungicides. Prog Pestic Biochem Toxicol 4:165–218

    Google Scholar 

  • Draper MA, Secor GA, Gudmestad NC, Lamey HA, Preston D (1994) Leaf blight diseases of potato. Late blight. North Dakota State University Agriculture and University Extension.1084

    Google Scholar 

  • Drenth A, Guest DI (2004) Managing Phytophthora diseases. In: Drenth A, Guest DI (eds) Diversity and Management of Phytophthora in Southeast Asia, Austalian Centre for International Agricultural Research (ACIAR) Monograph 114. Australian Centre for International Agricultural, Canberra

    Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP, Zhou J, Liebrand TWH, Xie C, Govers F, Robatzek S, van der Vossen EAG, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2015) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nate Plants 1:15034

    Article  CAS  Google Scholar 

  • Dubreuil-Maurizi C, Trouvelot S, Frettinger P, Pugin A, Wendehenne D, Poinssot B (2010) β-amino butyric acid primes an NADPH oxidase–dependent reactive oxygen species production during grape vine-triggered immunity. Mol Plant Microbe Interact 23:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Eckardt NA (2002) Plant disease susceptibility genes? Plant Cell Online 14(9):1983–1986

    Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signalling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tarabily KA, Sykes ML, Kurtboke ID, Hardy GES, Barbosa AM, Dekker RFH (1996) Synergistic effects of a cellulase-producing Micromonospora and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Bot 74:618–624

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St Paul

    Google Scholar 

  • Fang JG, Tsao PH (1995) Efficacy of Penicillium funiculosum as a biological control agent against Phytophthora root rots of azalea and citrus. Phytopathology 85:871–878

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization) (2008) Potato world: Africa-International Year of the Potato 2008. http://www.potato2008.org/en/world/africa.html

  • Fekede G, Amare A, Nigussie D (2013) Management of Late Blight (Phytophthora infestans) of potato (Solanum tuberosum) through potato cultivars and fungicides in Hararghe highlands, Ethiopia. Int J Life Sci 2(3):130–138

    Google Scholar 

  • Fontem DA, Aighew B (1993) Effect of fungicides on late blight control and yield loss of potato in the western highlands of Cameroon. Int J Pest Manag 39:152–155

    Article  CAS  Google Scholar 

  • Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordoñez ME, Fry BA, Doucett K, Fry WE (1997) Population genetic structure of Phytophthora infestans in Ecuador. Phytopathology 87:375–380

    Article  CAS  PubMed  Google Scholar 

  • Fry WE (1978) Quantification of general resistance of potato cultivars and fungicide effects for integrated control of late blight. Phytopathology 68:1650–1655

    Article  CAS  Google Scholar 

  • Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. Bioscience 47:363–371

    Article  Google Scholar 

  • Fry WE, Goodwin SB, Dyer AT, Matuszak JM, Drenth A, Tooley PW, Sujkowski LS, Koh YJ, Cohen BA, Spielman LJ, Deahl KL, Inglis DA, Sandlan KP (1993) Historical and recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Dis 77:653–661

    Article  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Garrett KA, Dendy SP (2001) Cultural practices in potato late blight management. In: Fernandez- Northcoted N (ed) “Complementing resistance to late blight (Phytophthora infestans) in the Andes” Proceedings of GILB Latin American workshop I, 13–16 February, Cochabamba, Bolivia, pp 107–113

    Google Scholar 

  • Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal A (2015) Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 6:1–14

    Article  Google Scholar 

  • Guest DI, Pegg KG, Whiley AW (1995) Control of Phytophthora diseases of tree crops using trunk-injected phosphonates. Hortic Rev 17:299–330

    Google Scholar 

  • Hakiza JJ (1999) The importance of resistance to late blight in potato breeding in Africa (Abstract). In: Proceedings of the global initiative on late blight conference, Quito, Ecuador, p 4

    Google Scholar 

  • HARC (Holetta Agricultural Report Center) (2007) Impact of farmers’ Selected IDM options on potato late blight control and yield. In: African Crop Science conference proceedings, Egypt: El-Minia 8, pp 2091–2094

    Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LA, Kessel GJ, Visser RG, van der Vossen EA (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57

    Article  Google Scholar 

  • Heller WE, Theilerhedtrich R (1994) Antagonism of Chaetomium globosum, Gliocladium virens and Trichoderma viride to four soil-borne Phytophthora species. J Phytopathol 141:390–394

    Article  Google Scholar 

  • Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the cloning of the R3a late blight resistance gene in potato. Plant J 42(2):251–261

    Article  CAS  PubMed  Google Scholar 

  • Huibers RP, Loonen AEHM, Gao D, Ackerveken GVD, Visser RGF, Bai Y, Damme EJMV (2013) Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS One 8(6):e67467

    Google Scholar 

  • Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J (2013) Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. Plant Sci 211:23–34

    Article  CAS  PubMed  Google Scholar 

  • Jones GD (1998) The epidemiology of plant diseases, 3rd edn. Kluwer Academic Publishes, London, pp 371–388

    Book  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6(7):1200–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keerthana U, Nagendran K, Raguchander T, Rajendran L, Karthikeyan G (2015) Biological management of potato late blight disease using Bacillus subtilis var. amyloliquefaciens. In: 3rd International symposium on Phytophthora, Bengaluru

    Google Scholar 

  • Kim H, Lee H, Jo K, Mahdi Mortazavian SM, Huigen DJ, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935

    Article  CAS  PubMed  Google Scholar 

  • Kirk W (2009) Potato late blight alert for the Midwest. Field crop advisory team alert current news articles

    Google Scholar 

  • Kirk W, Wharton P, Hammerschmidt R, Abu-el Samen F, Douches D (2013) Late blight. Michigan State University extension bulletin E-2945. East Lansing. Available on http://www.potatodiseases.org/lateblight.html

  • Latijnhouwers M, Ligterink W, Vleeshouwers VG, VanWest P, Govers F (2004) A Gα subunit controls zoospore mobility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925–936

    Article  CAS  PubMed  Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL (2001) Organic amendments as a disease control strategy for soil borne diseases of high-value agricultural crops. Australs Plant Pathol 30:111–117

    Article  Google Scholar 

  • Leonards-Schippers C, GieVers W, Salamini F, Gebhardt C (1992) The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Mol Gen Genet 233:278–283

    Article  CAS  PubMed  Google Scholar 

  • Li X, van Eck HJ, Rouppe van der Voort JNAM, Huigen DJ, Stam P, Jacobsen E (1998) Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theor Appl Genet 96:1121–1128

    Google Scholar 

  • Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers VGAA, van der Vossen E, Qu D, Visser RGF, Jacobsen E, Vossen JH (2011) Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant-Microbe Interact 24(10):1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Ton J (2012) The epigenetic machinery controlling transgenic rational systemic acquired resistance. Plant Signal Behav 7:615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AD, Gary AS, Neil CG, Arthur HL, Duane P (1994) Leaf blight diseases of potato. North Dakota State University Agriculture and University Extension

    Google Scholar 

  • Mercure P (1998) Early blight and late blight of potato. University of Connecticut, Integrated Pest Management. Available on www.hort.uconn.edu/IPM/VEG/HTMS/BLTPOT.HTML

  • Mesfin T, Gebremedhin G (2007) Impact of farmers’ selected IDM options on potato late blight control and yield. In: African Crop Science Conference Proceedings, vol 8, pp 2091–2094

    Google Scholar 

  • Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert H-R, Walkemeier B, Gebhardt C (2016) Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNPs for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS One 11(6):e0156254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukalazi J, Adipala E, Sengooba T, Hakiza JJ, Olanya M, Kidanemariam H (2001) Metalaxyl resistance, mating type and pathogenicity of Phytophthora infestans in Uganda. Crop Prot 20:379–388

    Article  CAS  Google Scholar 

  • Njualem DK, Demo P, Mendoza HA, Koi JT, Nana SF (2001) Reaction of some potato genotypes to late blight in Cameroon. Afr Crop Sci J 1(1):209–213

    Google Scholar 

  • Nowara D, Gaya A, Lacommeb C, Shawb J, Ridoutc C, Douchkova D, Hensela G, Kumlehna J, Schweizera P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nsemwa LTH, Mwalyego FM, Kabungo DA (1992) A review of past crop protection research in the southern highlands of Tanzania and prospects for the future. In: Proceedings of an international conference on agricultural research, training and technology transfer in the southern highlands of Tanzania: past achievements and future prospects. 5–9 October, Uyole Agricultural Centre, Mbeya Tanzania

    Google Scholar 

  • Oostendorp M, Kuntz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Ouimette DG, Coffey MD (1990) Symplastic entrance and phloem translocation of phosphonate. Pestic Biochem Physiol 38:18–25

    Article  CAS  Google Scholar 

  • Pieterse CMJ (2012) Prime time for transgenic rational defense. Plant Physiol 158:545–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popokova KV (1972) Late Blight of Potato. Moscow. In: Abate T (ed) (1985) Review of crop production research in Ethiopia. Proceedings of the first Ethiopian crop protection symposium. Institute of Agricultural Research, Addis Ababa, Ethiopia

    Google Scholar 

  • Powelson M, Inglis DA (1998) Potato late blight: live on the internet. American Phytopathological Society, St. Paul. Available on www.apsnet.org/online/feature/lateblit/

  • Prime-A-Plant Group, Conrath U, GJM B, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M, CMJ P, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19(10):1062–1071

    Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    Article  CAS  PubMed  Google Scholar 

  • Rees DJ, Ekpere JA, Kamasho JA, Gillings SI, Mussei ANK, Temu AEM (1992) Adapting research to farmers’ circumstances in the southern highlands of Tanzania. In: Proceedings of an international conference on agricultural research, training and technology transfer in the southern highlands of Tanzania: past achievements and future prospects, 5–9 October Uyole Agricultural Centre, Mbeya Tanzania

    Google Scholar 

  • Schiessendoppler E, Molnar U, Glauninger J, Olaniya M, Bekele K (2003) Characterization of Phytophthora infestans populations in Sub-Saharan Africa (SSA) as a basis for simulation modelling and integrated disease management. Ages, Vienna

    Google Scholar 

  • Shaw DS, Khaki IA (1971) Genetical evidence for diploidy in Phytophthora. Genet Res 17:165–167

    Article  Google Scholar 

  • Shinners CT, Bains P, McLaren D, Thomson J (2003) Commercial potato production – disease management. Western Potato Council. Available on http://www.gov.mb.ca/agriculture//crops/potatoes/bda04s07

  • Shtienberg D, Raposo R, Bergerson SN, Legard DE, Dyer AT, Fry WE (1994) Inoculation of cultivar resistance reduced spray strategy to suppress early and late blight on potato. Plant Dis 78:23–26

    Article  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Stone A (2009) Organic Management of Late Blight of potato and tomato (Phytophthora infestans). Sustainable Agriculture Research and Education. Oregon State University. Available on http://www.extension.org/pages/18361/

  • Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200:808–819

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Wolters A, Vossen JA, Rouwet ME, Loonen AEHM, Jacobsen E, Visser RGF, Bai Y (2016a) Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 25(5):731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun K, Wolters AMA, Loonen AEHM, Huibers RP, van der Vlugt R, Goverse A, Jacobsen E, Visser RGF, Bai Y (2016b) Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 25:123–138

    Article  CAS  PubMed  Google Scholar 

  • Thind TS (2015) Relevance of fungicides in the present day crop protection and the way ahead. J Mycol Plant Pathol 45(1):4–12

    Google Scholar 

  • Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragão FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Métraux JP, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kesse G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Liu Z, Lin R, Li E, Mao Z, Ling J, Yang Y, Yin WB, Xie B (2016) Biosynthesis of antibiotic Leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on Phytophthora revealed by genome mining. PLoS Pathog 12(7):e1005685. https://doi.org/10.1371/journal.ppat.1005685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2012) Treating seeds with activators of plant defense generates long-lasting priming of resistance to pests and pathogens. New Phytol 193:770–778

    Article  CAS  PubMed  Google Scholar 

  • You MP, Sivasithamparam K, Kurboke DJ (1996) Actinomycetes in organic mulch used in avocado plantations and their ability to suppress Phytophthora cinnamomi. Biol Fertil Soils 22:237–242

    Article  Google Scholar 

  • Zhang X (2008) The epigenetical and scape of plants. Science 320:489–492

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Duwal A, Su Q, Vossen JH, Visser RGF, Jacobsen E (2013) Vector integration in triple R gene transformants and the clustered inheritance of resistance against potato late blight. Transgenic Res 22:315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goutam, U., Thakur, K., Salaria, N., Kukreja, S. (2018). Recent Approaches for Late Blight Disease Management of Potato Caused by Phytophthora infestans . In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_18

Download citation

Publish with us

Policies and ethics